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a  b  s  t  r  a  c  t

System  outputs  with different  sampling  times  may  challenge  traditional  subspace  identification  methods
to  generate  accurate  process  models  and  consequently  provide  model-based  control  systems  that  may  not
be  very  effective.  The  multi-rate  identification  problem  is  addressed  by  dividing  the  multi-rate  sampled
system  into  different  subsystems,  and  a  multi-rate  distributed  model  predictive  control  technique  is
proposed  to control  such  systems.  The  performance  of the proposed  method  is  evaluated  and  illustrated
by  modeling  and  controlling  the  Tennessee  Eastman  challenge  problem.
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1. Introduction

Chemical processes may  have controlled variables with differ-
ent sampling rates. Classical subspace identification to model a
multi-rate sampled system at basic rate (the greatest common fac-
tor of different sampling rates) may  yield poor prediction results
for the variables with large sampling times. A better approach for
identification of multi-rate systems is based on a lifted model, in
which the system inputs and outputs with slower sampling rates
are lifted to a basic (fastest) rate, which will generate larger dimen-
sions of inputs and outputs for system models. There are two
alternatives for using the lifted model in control system design.
The lifted model can be used directly in subspace predictive con-
trol [1], or the lifted model can be converted to the basic-rate
model which is then used in regular model predictive control
(MPC) [2]. The limitation of the first approach is the increase in
dimensionality of the model due to lifting, and the worst situation
happens when some of the variables have much slower samp-
ling rates compared to the fast rate. For the second approach, the
inaccuracy of the lifted model may  cause noticeable errors in the
basic-rate model when extracting the basic-rate model from the
lifted model.
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We propose a new approach to solve the control problem of
multi-rate sampled systems that utilizes the lifted model, and
leverages the advantages of distributed control techniques. The key
is to let the local controllers communicate with each other and
generate the optimized inputs sequences, which guarantee global
stability and (sub)optimality, similar to the concepts of distributed
MPC  (DMPC) and feasible cooperative MPC  (FC-MPC) [3–6]. Exten-
sion of DMPC to nonlinear systems is also an active research area,
such as an effective nonlinear DMPC based on Lyapunov-based
MPC, which follows similar information exchange mechanism as
FC-MPC [7]. Interest in distributed MPC  has increased in recent
years and various novel techniques and implementations have been
reported [8–20]. In literature, centralized MPC was  utilized to deal
with multi-rate sampling process in [21], as well as distributed MPC
in [22,23]. Compared to the distributed control in [22,23] which
are based on Nash equilibrium, the proposed method in this paper
focuses on global objective therefore it is approaching Pareto opti-
mality.

In the proposed method for a multi-rate sampled systems, sys-
tem outputs will be assigned to different subsystems based on their
sampling times (in each subsystem, all the controlled variables
have the same sampling time, but it is not necessary to have all
the variables that have the same sampling time in a single sub-
system). Then, only input lifting (to basic rate) is required when
identifying the lifted model of one subsystem, with the outputs
unchanged, which further reduces the dimensions of the subsystem
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models. For the model of a subsystem, the influences from neighbor
subsystems also need to be considered in order to develop dis-
tributed control. Thus, system identification (SI) should also include
the related inputs of neighbor subsystems as inputs to this sub-
system. Subspace identification will be utilized to obtain the state
space model for each subsystem. After the distributed models under
different sampling times are available, DMPC is proposed to design
the control system for the process with multi-rate sampling.

The Tennessee Eastman (TE) challenge problem is used to illus-
trate the proposed method [24]. In the TE process, concentration
measurements are sampled every 6 or 15 min, while other mea-
surements are sampled at higher frequency and could be assumed
to be continuous variables. Several groups proposed various con-
trol methods for the TE process. Ricker and his coworkers reported
control systems ranging from PI base control and decentralized
control, to first-principles modeling and state estimation, opti-
mization of operating conditions, to nonlinear model predictive
control [25–28]. Srinivas and Arkun reported an identification-
control scheme that achieved very good results with a DMC-based
MPC  technique that uses the identified linear model [29]. Most
researchers focused on MPC  with state space models. One draw-
back is the use of too many PI controllers that sometimes reduces
the MPC  to play a coordinator/assistant role in control. Juricek and
Larimore used subspace identification based on canonical variate
analysis (CVA) for SI of the TE process [30]. However, their base con-
trol for stabilizing the process is not desirable for a control problem;
the E feed is used to control the reactor level and thus eliminates one
important MV for regulating the product concentration. They also
state that the composition measurements in the TE process were
omitted to avoid a multi-rate sampling problem, which subspace
methods do not readily handle. Consequently, their SI approach
would not be useful for concentration control of the TE process.

Distributed control and multi-rate sampling paradigm fits well
in the framework of MADCABS (Monitoring, Analysis, Diagnosis,
and Control with Agent-Based Systems), a software platform devel-
oped at IIT to provide a real-time supervision and control system for
distributed and networked processes [31–35]. MADCABS is a multi-
agent system to implement adaptive, decentralized, hierarchical
supervision of process operations (Fig. 1). The proposed DMPC and
a coordinator agent [36] implemented in MADCABS enable multi-
rate sampling and enhance the closed-loop control functionality of
MADCABS.

The remainder of the paper is organized as follows. In Section
2, the motivation for the multi-rate system identification prob-
lem is illustrated by using the TE process. The distributed system
identification method for multi-rate sampled systems is presented
in Section 3, and multi-rate distributed model predictive control
based on the identified model is proposed in Section 4. In Section
5, the results of multi-rate distributed control of the TE problem
are given to illustrate the performance of the methods proposed.
Conclusions are provided in Section 6.

2. Motivation for use of the multi-rate identification

Modeling of the TE challenge problem illustrates the limitations
of using typical identification techniques for modeling multi-rate
systems. When we used standard subspace identification [37,38]
to obtain the system model for MPC  control of the TE challenge
problem, the identified model yielded poor predictions for the
controlled variables with larger sampling times and caused poor
control. The main objective in the TE challenge problem is to main-
tain the product flowrate and composition at desired levels [24].
The process contains three main operation units: a reactor, a sep-
arator, and a stripper. It has total 41 measured variables and 12
manipulated variables (MV), four reactants labeled as A, C, D, and E,

Table 1
Notations of CVs for TE process.

Notation CV

y1 Product flowrate
y2 Product G concentration
y3 Reactor pressure

Table 2
Notations of MVs  for TE process, and the amplitudes of PRTS and step changes for
system identification and validation respectively.

Notation MV  ıu(SI) ıu(Val)

u1 D feed 200 kg/s 80 kg/h
u2 E feed 200 kg/h 120 kg/h
u3 Reactor temp. 0.5 ◦C 2 ◦C
u4 Purge flowrate 0.05 kscmh 0.1 kscmh

two products labeled as G and H. Because of the process is unstable,
base control consisting of several PI controllers is applied similar
to [27]. First, the controlled variables (CV) and MVs  are analyzed
for defining the control problem. The MVs  and CVs are the inputs
and outputs for system identification, respectively. Since product
concentration is directly related to the control objective, G concen-
tration in product and the product flowrate are chosen as the CV.
Also, the reactor pressure is very sensitive to changes in process
operations, and it may  cause safety issues. Hence, it is selected as
another CV. Several factors that affect the concentration of G in
the product are considered as MVs. The feed D forms product G,
and E forms product H and thus will also influence the ratio of G.
Therefore, D and E feed are chosen as two  MVs. Moreover, reactor
pressure control is challenging because it is too sensitive to sev-
eral variables, including D feed and E feed. When concentration
control is sought, and D and E feeds change, the reactor pressure
will be affected significantly. Initially, purge flowrate was picked as
MV for the reactor pressure. This caused two problems and limited
the ability to regulate reactor pressure. One problem is the dynam-
ics between purge flowrate and reactor pressure that is not fast
enough to cover dramatic changes in reactor pressure. The second
problem is caused by the maximum purge flowrate which cannot
compensate very large changes in reactor pressure. Thus, another
MV (reactor temperature) is added to help reactor pressure control.
The response of reactor pressure to changes in reactor tempera-
ture is fast, but large temperature changes could cause instability
and this drawback must be dealt with carefully during control. The
selected CVs and MVs  are listed in Tables 1 and 2.

Pseudo random ternary sequence (PRTS) signals are sent to MVs
to stimulate the system to generate data rich in dynamic variations
for open-loop system identification. The amplitudes of the PRTS
are listed in Table 2. The sampling time for TE process is 1 min  (for
variables with sampling time longer than 1 min, the zero-order hold
(ZOH) is used, which means the measurement value is unchanged
until the next update), and the switch time of PRTS is set to be
30 min. In addition to the pure PRTS, some small white noise is also
added to the PRTS to reduce the singularity of the intermediate
matrices when performing system identification. The amplitude of
white noise is set to be 10% of the amplitude of PRTS. The total
sampling period is 96 h [30].

For validation, the responses of CVs to step changes in each MV
are considered, and the amplitudes of the MVs  are shown in the
last column of Table 2. Three prediction horizons are considered
and compared to assess the accuracy of the identified model in
high, intermediate, and low frequencies in order to evaluate model
performances for each data set:

• 1-Step ahead prediction. The states are estimated by Kalman fil-
ter.
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