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a  b  s  t  r  a  c  t

This  paper  introduces  an  original  definition  of diagnosability  for  nonlinear  dynamical  models  called  func-
tional  diagnosability. Fault  diagnosability  characterizes  the  faults  that  can  be  discriminated  using the
available  sensors  in  a system.  The functional  diagnosability  definition  proposed  in  this  paper  is based  on
analytical  redundancy  relations  obtained  from  differential  algebra  tools.  Contrary  to classical  definitions,
the study  of  functional  diagnosability  highlights  some  of  the  analytical  redundancy  relations  properties
related  to  the fault  acting  on  the  system.  Additionally,  it gives  a criterion  for  detecting  the  faults.  Inter-
estingly,  the proposed  diagnosability  definition  is closely  linked to the  notion  of  identifiability,  which
establishes  an  unambiguous  mapping  between  the  parameters  and  the  output  trajectories  of a  model.
This  link  allows  us  to provide  a  sufficient  condition  for  testing  functional  diagnosability  of  a  system.
Numerical  simulations  attest  the relevance  of the suggested  approach.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Fault diagnosability establishes which faults can be discrimi-
nated according to the available sensors in a system. By analyzing
diagnosability, it is possible to anticipate the discriminatory power
of a diagnoser at run time and to propose solutions to other impor-
tant problems like the one of selecting the lowest cardinality sensor
set that guarantees discriminability of an anticipated set of faults.
Diagnosability analysis must be achieved in the framework used to
design the diagnoser, which is in our case the model-based frame-
work. The principle of model-based fault diagnosis is to compare
the behavior of the system with the predictions that arise from
the model and to analyse the sources of discrepancy. In the case
of nonlinear models, the classical methods are based on nonlinear
observers ([13] for example) and/or analytical redundancy rela-
tions (ARRs) [14,15]. These latter are relations linking the system
inputs, outputs and their derivatives. This paper follows the sec-
ond track and proposes an extension of the existing definitions
and methods for diagnosability and detectability from ARRs. The
extension is in line with a gain of discriminability.
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The considered nonlinear dynamical parameterized models
(controlled or uncontrolled) are of the following form:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t, p, f ) = g(x(t, p), u(t), f, ε(t), p),

y(t, p, f ) = h(x(t, p), u(t), f, ε(t), p),

x(t0, p, f ) = x0,

t0 ≤ t ≤ T.

(1)

where

• x(t, p, f ) ∈ R
n and y(t, p, f ) ∈ R

m denote the state variables and
the outputs respectively,

• the functions g and h are real, rational and analytic on M,  where
M is an open set of R

n such that x(t, p, f) ∈ M for every t ∈ [t0, T]. T
is a finite or infinite time bound,

• u(t) ∈ R
r is the control vector,

• f ∈ R
e is the fault vector,

• ε(t) is a stochastic vector introducing noise in the system,
• the vector of parameters p belongs to UP, where UP ⊆ R

q is an a
priori known set of admissible parameters,

• the initial conditions x0 are assumed to belong to a bounded set
x0, to be independent of f and to be different from an equilibrium
point of the system.
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f = 0 means no fault and ε = 0 means no noise. In the case of uncon-
trolled models u = 0.

From elimination theory, some differential polynomials, also
called input–output representations, that may  act as ARRs – since
they link system inputs, outputs, parameters and their derivatives
– can be obtained. In the last decade, algorithms for obtaining such
ARRs have been developed and implemented in softwares as Maple
[1]. They are based on differential algebra [6] and allow one to elim-
inate state variables, which are unknown, from the model. ARRs can
be used to detect [5], isolate and estimate faults or in other words
to achieve fault detection and isolation (FDI) [17]. To do so, a so-
called residual is associated to each ARR, and acts as a consistency
indicator [14].

In our paper, faults are considered to disturb the system model
(1). Interestingly, there is no restriction about the type of faults.
They may  act multiplicatively changing the value of some param-
eter already present in the model or as additional parameters. FDI
then relies on the assumption that the model parameterization is
suitably chosen so that the faults of the system can be detected and
isolated. The purpose of diagnosability analysis is to verify such
property.

Some definitions of diagnosability based on ARRs have been pro-
posed in the literature. A classical diagnosability definition stands
in comparing fault signatures [15]. Typically, the fault signature of a
fault is a Boolean vector referring to a set of residuals and reporting
which residuals are sensitive (with a 1) and not sensitive (with a 0)
to the fault. According to [15], the model is said diagnosable if for
any two faults, their fault signatures are distinct. Then, if two faults
act on the same residuals, the model is not diagnosable.

Ref. [2] considers that a system is diagnosable if f is algebraically
observable with respect to u and y. Defining fi as the ith component
of the fault vector f, it means that each fault component fi can be
written as a solution of a polynomial equation in fi and finitely many
time derivatives of inputs u and outputs y. This definition can be
likened to the definition of identifiability proposed in [10]. Indeed,
the parameters are defined globally identifiable if the condition
above stands for each parameter pi. Considering the fault vector as a
parameter vector, classical identifiability and diagnosability as pro-
posed by [2] are hence equivalent. The links between the notions of
identifiability and diagnosability and the correspondence between
faults and parameters have actually been sensed by several authors
among which those of [17]. Their work is based on the key paper
[10] that presents a method based on the use of input–output rep-
resentations – from which ARRs can be built – for studying the
identifiability of a model. In [10], input–output representations are
obtained with the Ritt’s algorithm and checking identifiability may
require a lot of manipulations of the model equations. As a result,
it is often impossible to obtain such input–output representations
for complex systems and, if they are obtained, the order of deriva-
tives is so high that the relations cannot be used as ARRs for FDI,
thus the limitation of the method proposed by [2] for diagnosability
analysis and FDI. Aware of these problems, [17] relaxes the condi-
tion required by global identifiability, and allows the input–output
representations to involve several parameters/faults. Input–output
representations are used to build residuals evaluated thanks to a
statistical change detection method. Hence [17] proposes an FDI
method for non linear systems but does not consider diagnosabil-
ity analysis and the problem of providing conditions for faults to be
discriminable.

In [3], thanks to the Rosenfeld–Groebner algorithm, which is by
far more efficient than the Ritt’s algorithm [1], and to a particular
elimination order, the authors propose to study the identifiability
of the parameters of a model from differential polynomials that
may  contain more than one parameters. The advantage of these
polynomials is that they present a particular form allowing one
to provide general conditions to study identifiability. Furthermore,

they contain derivatives of lower order than the ones required by
[10]. We  borrow the idea of [3] for diagnosability analysis and
propose a new definition of diagnosability, called functional diag-
nosability. This definition is closely related to the classical definition
of identifiability. From this link, definitions of fault detectability and
discriminability are proposed and a sufficient condition for verify-
ing functional diagnosability is deduced. The method proposed to
verify this condition is easy to implement and allows to detect faults
whereas traditional methods fail, as illustrated by the example of
the water tanks presented in Section 4.2.

The paper is organized as follows. In Section 2, a general method
for obtaining specific ARRs is presented. In Section 3, the definition
of functional diagnosability is introduced and linked to the notion of
identifiability. From this study, a criterion is given for testing func-
tional diagnosability. Section 4 presents two  numerical examples
and Section 5 discusses the results and concludes the paper.

2. Obtention of ARRs

In the following subsections, the expression of ARRs and how to
obtain ARRs through variable elimination are presented.

2.1. ARRs and their decomposition

In [14], the authors propose to use ARRs for fault detection
and isolation in algebraic dynamic systems. An ARR is a relation
deduced from the model of the system that links the system inputs
and outputs and their derivatives. Provided that derivatives can be
estimated, an ARR is hence a testable relation in the sense that it
can be evaluated with the measurements and this is why  it is useful
in the FDI framework.

The following notations borrowed from [14] are used. If ϑ is
a vector, ϑ̄(k) is the vector whose components are ϑ and its time
derivatives up to order k, ϑ̄ stands for ϑ and its time derivatives up
to some (unspecified) order. Consider the set of ARRs:

wi(ȳ, ū, f, ε̄,  p) = 0, i = 1, . . .,  m. (2)

They can be decomposed as:

wi(ȳ, ū, f, ε̄,  p) = wd,i(ȳ, ū, f, p) − ws,i(ȳ, ū, f, ε̄,  p) = 0, (3)

where wd,i(ȳ, ū, f, p) is the deterministic part (a polynomial of
degree zero in the components of ε̄) and ws,i(ȳ, ū,  f, ε̄,  p) is the
stochastic part (a polynomial of degree at least one in some com-
ponents of ε̄).

In most cases, there is no simple characterization of the
residual’s stochastic behavior, in particular for established fault
detection procedures. [17] provides an FDI method that perfectly
exemplifies how stochastic aspects can be managed. However,
other papers like [14] propose to base fault detection on the deter-
ministic part of the residual and we also adopt this assumption.
With this assumption, ws,i(ȳ, ū, f, ε̄,  p) = 0 and ARRs can be rewrit-
ten:

wi(ȳ, ū, f, ε̄,  p) = wd,i(ȳ, ū, f, p) = 0. (4)

wd,i(ȳ, ū, f, p) can be decomposed as:

wd,i(ȳ, ū, f, p) = w0,i(ȳ, ū, p) − w1,i(ȳ, ū, f, p), (5)

where w0,i(ȳ, ū, p) is a fault-free term and w1,i(ȳ, ū,  f, p) is a term
that depends on the fault vector. Consequently:

wi(ȳ, ū, f, p) = w0,i(ȳ, ū, p) − w1,i(ȳ, ū, f, p). (6)

According to (4), the following relation is always true:

w0,i(ȳ, ū, p) = w1,i(ȳ, ū, f, p). (7)
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