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a  b  s  t  r  a  c  t

In  biotechnological  processes  such  as  fed-batch  reactors  the lack  of  reliable  and  robust  on-line  sensors
and  the  limited  number  of actuators  make  the task  of operating  at optimal  conditions  very  difficult.  We
present  a feedback  controller  that aims  at regulating  the substrate  concentration  at  an  optimum  value
such  that  biomass  production  is  enhanced  while  by-product  formation  is not  favored.  We  use  a  virtual
output  that  is estimated  using  a  bank  of  weighted  super-twisting  observers  to  drive  an  output-feedback
extremum-seeking  controller.  The  only  online  measurements  needed  are  the  biomass  concentration  and
the oxygen  and  carbon  dioxide  mass  transfer  rates.  Simulations  on a  fed-batch  bioreactor  model  show
its applicability.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In biotechnological applications it is common to optimize the
operation of fed-batch bioreactors to attain a desired performance
by manipulating the feed rate. A particular case is the maximization
of the final biomass while minimizing an undesired by-product.

The fed-batch growth of certain strains of Escherichia coli
presents overflow metabolism [1]: its catabolism has a limited
energy production for cell growth and division because of a limited
capacity to oxidize the main substrate, usually glucose. Thus, under
excess of this nutrient, it can follow another metabolic pathway
more commonly known as fermentation, producing a by-product
which is generally a growth inhibitor, e.g. acetate.

The mathematical model of this process has already been
described [2,3] and it involves three reactions: substrate oxida-
tion, substrate fermentation, and by-product oxidation. The first
two reactions occur only when the substrate is in excess, i.e. when
its concentration is above a critical value, whereas the first and
last reactions are active when this concentration is below the crit-
ical level. The state variables are the biomass (X), the substrate
(S), the by-product (P), the dissolved oxygen (O) and the CO2 (C)
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concentrations, as well as the current volume in the reactor (V).
It has a main control input which is the dilution rate u = Qin/V,
where Qin is the volumetric inflow rate. Other inputs to the sys-
tem are the substrate inflow concentration (Sin) and the supplied
oxygen through agitation or a sparger, influencing the mass transfer
coefficient (kLa).

We consider in this contribution a simplified model of the sys-
tem, where it is assumed that no by-product (acetate) is formed
nor consumed. Then we  can write the system as

�̇ = K�X − �u + f, �(0) = �0, (1a)

V̇ = u V(0) = V0, (1b)

where V is the volume, � = [X, O, C, S]T is the state vector, K ∈ R
4×2

contains the pseudo-stoichiometric coefficients, u is the dilution
rate, and f = [0, fOTR, − fCTR, Sinu]T is the vector of gas and mass flow
rates in and out of the reactor; fOTR and fCTR are the oxygen and
CO2 transfer rates. The specific reaction rate vector is � = [r1, r2]T,
where r1 is the respiration rate and r2 is the fermentation rate,
which depend on a critical rate r∗S :

r1 = min(rS, r∗S ), r2 = max(0,  rS − r∗S ). (2)

Substrate (glucose) is consumed with rate rS, which follows a
Monod model,

rS = �S

(
S

S + KS

)
. (3)
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The rate r∗S defines a critical substrate concentration S*, such that
respirative regime occurs when S(t) < S* and respiro-fermentative
regime occurs when S(t) > S*. Although it is not modeled by (1),
acetate is produced in respiro-fermentative regime, but only
slowly consumed in respirative regime [3]. This by-product (P) is
inhibitory for biomass growth, as its accumulation decreases the
critical consumption rate r∗S as follows:

r∗S = �∗
S

(
O

O + KO

)(
KiP

KiP + P

)
, (4)

where �∗
S , KO, and KiP are constants.

The best strategy for enhancing biomass production without
accumulating acetate is thus to operate in the boundary between
regimes, i.e. maintaining S(t) at the critical value S*, where rS(S∗) =
r∗S . This way, no acetate is produced and thus the critical r∗S remains
at a maximum, leading to maximum biomass growth. However, S*

is not known a priori and furthermore it may  decrease slowly during
the fed-batch cultivation if acetate accumulates.

For this reason real-time optimization (RTO) schemes have been
proposed [3–5]. They use a virtual output that is a linear combina-
tion of the two main reaction rates in the process:

y = �(S) = r1(S) − r2(S) = �T�(S) � = [1,  −1]T . (5)

As a function of S, y(S) has a maximum whenever S = S* and thus
y = r∗S . The proposed controllers manipulate the dilution rate u(t) to
keep y(t) near its optimum value at r∗S . For example, Dewasme et al.
[3] propose the use of an extremum-seeking strategy that provides
an estimate of S* to regulate S(t) at this value; it assumes on-line
measurement of S. In contrast, Vargas et al. [5] propose the use of
a modified PI-controller to regulate y(t) at its maximum value y*

without the need to measure S.
A problem with these controller proposals is that this output

cannot be measured directly. This is why we call it a virtual output.
Dewasme et al. [3] propose an algebraic approach to estimate it
under the assumption of quasi-steady-state, perfect knowledge of
the matrix K, and online measurement of all the signals in f(t). How-
ever, it has the disadvantage of being very sensitive to the exactness
of the matrix K of pseudo-stoichiometric coefficients and it only
estimates the quantity (r1 − r2)X, so it also becomes sensitive to the
noise present in X.

In a recent contribution we proposed the use of a bank of super-
twisting observers to estimate the virtual output [6]. The approach
uses only the on-line measurements of X, O, and C (using probes),
as well as fOTR and fCTR (using a gas analyzer). Measurement of S is
not needed, nor the knowledge of Sin. Knowledge of the matrix K is
assumed, but if this is not possible, a methodology is proposed to
build an estimate of its underlying structure, given gathered data
from a previous batch operation.

In this contribution we  now explain further the estimation pro-
cedure for the virtual output using the bank of observers and
combine the use of the observer with a simple discrete two-level
extremum-seeking controller. This leads to an output-feedback
controller that is able to bring substrate trajectories close to the
optimum value S*(t) and thus enhance the biomass growth.

The next section presents first the weighted super-twisting
observer (WSTO) and discusses some of its useful properties. This
observer is used in Section 3 to propose a bank of WSTO’s for esti-
mating the virtual output. This is followed by a section devoted to
the choice of a crucial transformation matrix and how to estimate
it with recorded data. Section 5 presents the (virtual) output-
feedback two-level controller. Then, the simulation results with the
bioreactor case study are presented and discussed, and finally some
conclusions are drawn.

2. A weighted super-twisting observer

Consider the class of second-order systems

ẋ1 = f1(x1, u) + b(t)x2 + ı1(t, x, u), (6a)

ẋ2 = f2(x1, x2, u) + ı2(t, x, u, w), (6b)

y = x1, (6c)

where x1 ∈ R, x2 ∈ R  are the states, u ∈ R
m is a known input, w ∈ R

r

represents an unknown input and y ∈ R  is the measured output;
f1 is a known continuous function and f2 corresponds to a known
possibly discontinuous or multivalued function; ı1 and ı2 repre-
sent uncertain terms. The measured variables are x1 and the known
input u. The signal b(t) is a known positive function that acts as a
weight on x2, which is lower and upper bounded,1 i.e.

0 ≤ bm ≤ b(t) ≤ bM. (7)

It is assumed that system (6) has solutions in the sense of Filip-
pov [7].

When ı1(t, x, u) ≡ 0 the observability map  O  : [x1, x2]T �→ [y, ẏ]T

is globally invertible for every u and w, so it is possible to deter-
mine the unmeasured state x2 from the measurement of x1. In the
absence of w, the system (6) is uniformly observable for every input
[8] and if w is present, then it is only strongly observable [9,10]. How-
ever, if ı1(t, x, u) /= 0, then observability is lost and it is impossible
to determine exactly the state x2. This happens usually when there
is noise in the measurements of x1.

The proposed weighted super-twisting observer (WSTO) is:

˙̂x1 = −�1�1(e1) + f1(x̂1, u) + b(t)x̂2, (8a)

˙̂x2 = −�2�2(e1) + f2(x̂1, x̂2, u), (8b)

where e1 = x̂1 − x1, and e2 = x̂2 − x2 are the state estimation errors.
The constant observer gains �1 and �2 are selected to ensure the
convergence of e1 and e2 to zero. The injection nonlinearities �1
and �2 are monotone increasing functions of e1 and are given by:

�1(e1) = �1|e1|(1/2)sign(e1) + �2|e1|qsign(e1), (9a)

�2(e1) = �2
1

2
sign(e1) + �1�2

(
q + 1

2

)
|e1|q−(1/2) sign(e1)

+ �2
2q|e1|2q−1sign(e1), (9b)

where �1 ≥ 0 and �2 ≥ 0 are non negative constants, not both zero,
and q ≥ 1 is a real number. Note that �2(e1) = �′

1(e1)�1(e1); �1 is
continuous while �2 is discontinuous at e1 = 0. Solutions of the
observer (8) are understood in the sense of Filippov [7]. The dynam-
ics of the state estimation errors e1 = x̂1 − x1 and e2 = x̂2 − x2 (i.e.
the estimation error vector e = [e1, e2]T) is described by

ė1 = −�1�1(e1) + b(t)e2 + 	1(t, e, x, u) , (10a)

ė2 = −�2�2(e1) + 	2(t, e, x, u, w) , (10b)

where

	1(t, e1, x, u) = f1(x1 + e1, u) − f1(x1, u) − ı1(t, x, u), (11a)

	2(t, e, x, u, w)  = f2(x1 + e1, x2 + e2, u) − f2(x1, x2, u)

− ı2(t, x, u, w).  (11b)

1 The case where b(t, u, y) is always strictly negative can be treated similarly.
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