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a  b  s  t  r  a  c  t

In  this  paper,  the  fractional  closed-loop  system  identification  using  the  indirect  approach  is  presented.
A  bias  correction  method  is developed  to deal  with  the  bias  problem  in  the  continuous-time  fractional
closed-loop  system  identification.  This  method  is  based  on the  least  squares  estimator  combined  with
the  state  variable  filter  approach.  The  basic  idea  is to eliminate  the estimation  bias  by  adding  a correction
term  in  the  least  squares  estimates.  The  proposed  algorithm  is  extended,  using  a  nonlinear  optimization
algorithm,  to  estimate  both  coefficients  and  commensurate-order  of the  process.  Numerical  example
shows  the  performances  of  the  fractional  order  bias  eliminated  least  squares  method  via Monte  Carlo
simulations.
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1. Introduction

Recently, several researches show that the fractional calcu-
lus provides an excellent tool to describe the behavior of many
complex physical systems due essentially to their long memory
characteristic. This induces the use of fractional models in many
applications involving various theoretical fields such as control
[1,2], diagnosis [3] and system identification [4,5].

Concerning the time-domain fractional system identification,
it has received great interest in the late nineties. In Cois et al.
work [6] the fractional differentiation orders are assumed to be
known a priori and only the coefficients are estimated by minimiz-
ing the quadratic criterion based on the equation-error. A synthesis
of fractional Laguerre basis for system identification is developed
in [7]. An optimal instrumental variable method for continuous-
time fractional system identification has been proposed in [8].
In Chetoui et al. work [4] a new methods based on higher-
order statistics are illustrated for the estimation of both fractional
orders and coefficients of continuous-time errors-in-variables frac-
tional models. In the bounded error context, Amairi et al. works
extended several set-membership methods to the fractional system
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identification such as the outer bounding ellipsoid (OBE) [9] and the
outer bounding parallelotope (OBP) [10].

The methods mentioned above are developed in open-loop
conditions. However, for many industrial production process, the
experimental data can only be obtained in closed-loop conditions
for several reasons like stability, security, safety and performance
constraints. In the literature, three approaches are proposed for the
closed-loop system identification: the direct approach, the indirect
approach and the joint input/output approach [11].

As for rational systems, (see [12,11,13] and the references
therein for more details) the fractional closed-loop system identifi-
cation has also attracted an attention recently. In [14], an unstable
fractional first-order system with input time-delay has been iden-
tified using a graphical method based on the step response of the
fractional closed-loop system. A more general indirect approach
has been proposed in [15] where the least squares algorithm com-
bined with the state variable filter is used. Simulation results have
shown the presence of a bias on the estimates when the system
is contaminated by a high level additive white noise. To solve this
problem, the bias eliminated least squares (bels) method proposed
in [16] is extended to the fractional case in [17]. This method is
called the fractional order bias eliminated least squares (fobels).

The fobels method is composed by three major steps. In the first
step, the least squares method is used to estimate the closed-loop
parameters. In the second step, the bias introduced by this method
is estimated by an appropriate algorithm. The third step consists
in computing the process parameters using the bias correction
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principle. The algorithm proposed in [17], besides its efficiency, it
requires a restriction on the controller order. To remove this restric-
tion, like as the rational case (see [18] and [19] for more details),
we propose in this paper an extended version of the fobels method
called the prefileterd fobels (pfobels) which deals with an arbitrary
order controller. The idea is to use a stable prefilter with an appro-
priate order connected to the external excitation of the closed-loop
system.

This paper is organized as follows: a mathematical background
of fractional systems is presented in Section 2. The problem state-
ment is illustrated in Section 3. In Section 4, the extension of the
bias eliminated least squares method to the fractional closed-loop
systems is developed. In Section 5, the algorithm of the prefiltered
fobels method is described. Both coefficients and fractional orders
are estimated in the Section 6. In Section 7, a numerical example
shows the performances of the developed method. Finally, Sec-
tion 8 concludes this paper.

2. Mathematical background

Several definitions of the fractional differentiation have been
proposed in the literature [20–22]. In this paper only the Grünwald-
Letnikov definition is used [23].

Definition 1. The �−Grünwald fractional differentiation of a
continuous-time function f(t) relaxed at t = 0 (i.e. f (t) = 0, ∀t ≤ 0)
is defined by

D�f (t) � 1
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Consider a SISO commensurate-order1 fractional system
described by

na∑
i=0

aiD
i�y (t) =

nb∑
j=0

bjD
j�yc (t) (3)

where (ai, bj) ∈ R
2 are the linear coefficients of the differential

equation, � ∈ R
∗+ is the commensurate-order and where yc (t) and

y (t) are respectively the input and the output signals.
Applying the Laplace transform to the fractional differential Eq.

(3), under zero initial conditions, yields the fractional transfer func-
tion

G (s) = B (s)
A (s)

=
∑nb

j=0bjs
j�∑na

i=0aisi�
(4)

Stability condition for the fractional systems has been estab-
lished in [21].

Theorem 1. A commensurate-order system described by (4) is
Bounded Input Bonded Output (BIBO) stable iff

0 < � < 2 (5)

1 All differentiation orders are exactly divisible by the same number, an integral
number of times.
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Fig. 1. Fractional closed-loop system.
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where s�
k

is a pole of the commensurate transfer function.

3. Problem statement

Consider the fractional closed-loop system depicted in Fig. 1.
G(s) and C(s) describe respectively the process transfer function

and the controller transfer function. The signals ys(t), yc(t) and y0(t)
are respectively the set-point input, the continuous-time noise-free
input and the process output.

The measurable output signal y(t) is eventually corrupted by an
additive noise e(t) such as

y (t) = y0 (t) + e (t) (7)

The process transfer function is considered commensurate and
given by

G (s) = B (s)
A (s)

=
∑nb

j=0bjs
j�∑na

i=0aisi�
; na ≥ nb (8)

where (ai, bj) ∈ R
2 are the linear coefficients of the process transfer

function and � ∈ R
∗+ is the process commensurate-order.

The controller transfer function is assumed to be known and
described by a commensurate transfer function as

C (s) = Q (s)
P (s)

=
∑nq

r=0qrsr�∑np

l=0plsl�
; np ≥ nq (9)

where (pl, qr) ∈ R
2 are the linear coefficients of the controller trans-

fer function and � ∈ R
∗+ is the controller commensurate-order.

In this paper, the input signal yc(t) is considered perfectly
known and the output signal y(t) is measured. The controller output
(the control signal) is supposed unmeasurable. Thus, the indirect
approach is required to identify the process with fractional model
using a prior knowledge of the controller.

Due to the feedback control, there exist a correlation between
the unmeasurable output noise and the control signals [11]. In the
case where the process and the controller are represented respec-
tively by (8) and (9), the correlation is amplified due to the long
memory aspect of the fractional differentiation.

Recently, some works present contributions in the fractional
closed-loop system identification context [15,17,24]. The simula-
tion results presented in [15] have shown that for an important
additive noise the estimated parameters are biased. To eliminate
this bias, the optimal instrumental variable method combined with
a nonlinear optimization algorithm is handled to identify both frac-
tional transfer function coefficients and fractional orders [24]. An
extension of the bias eliminated least squares (bels) method to frac-
tional order case has been proposed in [17]. This method gives an
unbiased estimation but, a restriction on the controller order is
verified.

The objective of this paper is to extend the bels method to frac-
tional order case to identify the fractional closed-loop systems
without noise modelling and without any restriction on the con-
troller order.
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