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a  b  s  t  r  a  c  t

This  paper  is concerned  with  integrated  design  and operation  of  energy  systems  that  are  subject  to
significant  uncertainties.  The  problem  is cast  as  a two-stage  stochastic  programming  problem,  which  can
be  transformed  into  a large-scale  nonconvex  mixed-integer  nonlinear  programming  problem  (MINLP).
The  MINLP  exhibits  a decomposable  structure  that  can  be exploited  by  nonconvex  generalized  Benders
decomposition  (NGBD)  for efficient  global  optimization.  This  paper  extends  the  NGBD  method  developed
by  the  authors  recently,  such  that  the  method  can handle  non-separable  functions  and  integer  operational
decisions.  Both  the  standard  NGBD  algorithm  and  an  enhanced  one  with  piecewise  convex  relaxations  are
discussed. The  advantages  of the proposed  formulation  and  solution  method  are  demonstrated  through
case  studies  of  two industrial  energy  systems,  a natural  gas  production  network  and  a  polygeneration
plant.  The  first example  shows  that  the two-stage  stochastic  programming  formulation  can  result  in better
expected  economic  performance  than  the  deterministic  formulation,  and  that  NGBD  is  more  efficient  than
a  state-of-the-art  global  optimization  solver.  The  second  example  shows  that  the integration  of  piecewise
convex  relaxations  can improve  the  efficiency  of  NGBD  by at  least  an  order  of  magnitude.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Global primary energy demand is projected to increase by over
one third from 2011 to 2035 [1]. This will result in increasing
needs for developing new and expanding existing energy systems,
especially clean and/or renewable energy systems (e.g. natural
gas production systems, biofuel plants) due to concerns with
energy and environmental sustainability. For the development of
an energy system, a design problem is often considered together
with an operational problem. In other words, the physical infra-
structure and the conditions under which the system should be
operated are to be determined simultaneously.

One challenge for integrated design and operation comes from
the uncertainties in the system, i.e., the factors that are not known
when the design problem is considered. The uncertain factors may
be the raw material and product prices, raw material availabil-
ity and quality, physical–chemical relationships, etc. On the other
hand, these uncertain factors can often be realized or estimated
with a high precision after the system is developed, so that the
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system operating conditions can be determined with a precise and
deterministic model. Therefore, the uncertainties in an integrated
design and operation problem can be addressed via the following
two-stage stochastic programming framework:

min
y∈Y

h(y) + E�∈�{Q (y, �)}, (TSSP)

where y denotes the design decisions, such as the topological struc-
ture of the system and capacities of the units, and h(y) represents
the total costs associated with y, typically the total investment costs
of the system. � denotes the uncertain factors that are assumed to
be unknown before the system is developed but known afterward,
and � denotes the set containing all possible realizations of � under
consideration. Q(y, �) represents the net cost induced by the opera-
tion of the system, typically the total operating cost minus the total
revenue (i.e., the negative of the total profit), with a given design y
and a particular realization of uncertainties �. Often the operation
of the system with a given y and a known � is determined by solving
an optimization problem; in this case, Q(y, �) is the optimal value
of the following optimization problem:

Q (y, �) = min
x

q(x, y, �)

s.t. g(x, y, �) ≤ 0,

x ∈ X(�),

(RP)
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where x denotes a set of variables relevant to the operating con-
ditions of the system, such as pressures and temperatures, and
q(x, y, �) represents the net operating cost for a particular group
of design/operational decisions and uncertainty realizations. In
the stochastic programming literature, Problem (RP) is called a
recourse problem [2].

If the set � is infinite, Problem (TSSP) is generally intractable,
as an infinite number of recourse problems are to be solved. A typ-
ical approach to solve Problem (TSSP) is to approximate the set
� with a finite subset �̃ = {�1, . . .,  �s} ⊂ �.  Each element of �̃ is
called a scenario. The probability of each scenario, ˛ω , can often
be estimated by known uncertainty distributions or historical data,
and

∑s
ω=1˛ω = 1. With this approximation, only a finite number of

recourse problems need to be addressed, and Problem (TSSP) can
be reformulated in the following form:

min
x1,...,xs,y

s∑
ω=1

˛ω(h(y) + q(xω, y, �ω))

s.t. g(xω, y, �ω) ≤ 0, ω = 1, . . .,  s,

x ∈ X(�ω), ω = 1, . . .,  s,

y ∈ Y.

(STSSP)

Problem (STSSP) represents the classical scenario formulation
for addressing uncertainties. Another classical formulation for
addressing uncertainties is a robust formulation, in which the cost
of the worst-case scenario (instead of the expected cost of a finite
of scenarios) is considered. The robust formulation can ensure fea-
sibility of solution for the problem, but it cannot ensure optimality
of the solution if the expected cost is to be minimized. In this
paper, the robust formulation is not considered, as we assume that
(a) the energy systems of consideration involve large investment
costs and throughputs, so the inability to achieve the best expected
economic performance may  result in significant loss of profit;
(b) feasibility of the solution for a finite number of scenarios is
sufficient.

The other challenge for integrated design and operation comes
from the need to determine different system operating conditions
for different operating modes. For example, in order to achieve
the best profit, a power plant may  generate more electricity in
the morning and less at night due to different electricity prices,
or more electricity in weekdays and less at weekends due to differ-
ent amounts of customer demand. In this case, the design problem
needs to be integrated with multiple operational problems instead
of a single one, and the integrated design and operation problem
is to ensure that the designed system can work under the different
operating conditions and that it achieves the best total profit over
all the operating modes. This optimization problem can also be cast
as a problem in the form of (STSSP); but in this case, set �̃ includes
the values of the deterministic parameters that may  be different
for different operating modes, instead of realizations of uncertain
parameters, and the pω represents the frequencies of occurrence of
the operating modes.

For convenience of subsequent discussions, Problem (STSSP) is
expressed as follows:

min
x1, ..., xs,y

s∑
ω=1

fω(xω, y)

s.t. gω(xω, y) ≤ 0, ω = 1, . . .,  s,

xω ∈ Xω, ω = 1, . . .,  s,

y ∈ Y,

(P)

where sets Xω = {xω = (xc,ω, xb,ω) ⊂ R
nxc × {0, 1}nxb : pω(xω) ≤

0}, Y ⊂ {0, 1}ny , functions fω : R
nxc × {0, 1}nxb

+ny → R, gω :
R

nxc × {0, 1}nxb
+ny → R

m, pω : R
nxc × {0, 1}nxb → R

mp are con-
tinuous. It is assumed that at least one function in the problem
is nonconvex (which is often the case for energy system design
and operation), then Problem (P) is a nonconvex mixed-integer
nonlinear programming (MINLP) problem. The size of Problem
(P) grows linearly with s (i.e., number of scenarios or operating
modes considered); when s is large, the problem is a large-
scale MINLP. While Problem (P) only addresses binary design
decisions y, it can be used for problems with bounded integer
design decisions, as any bounded integer variable can be rep-
resented by a linear combination of a finite number of binary
variables.

Problem (P) needs to be solved to global optimality to achieve
the highest total profit (or the lowest total cost), especially for
systems involving large investment costs and high throughputs.
However, the global optimization of the nonconvex MINLP is
often computationally challenging, because the solution times
of classical global optimization methods, such as branch-and-
reduce ([3]), SMIN-˛BB and GMIN-˛BB ([4]), and nonconvex
outer approximation ([5]), increase dramatically with the problem
size.

This paper focuses on efficient global optimization of Problem
(P) using nonconvex generalized Benders decomposition (NGBD),
a novel global optimization method recently developed by the
authors [6,7]. It is an extension of the authors’ paper for DYCOPS
2013 [8], and compared to the previous paper, it includes the fol-
lowing new contents:

1. As given earlier in this section, it shows how the integrated
energy system design and operation problem can be cast as a
two-stage stochastic programming problem, and why a scenario
approximation of this problem is a deterministic mixed-integer
nonlinear programming (MINLP) problem with a decomposable
structure.

2. It presents NGBD for a more general problem formulation, where
the functions may  not be separable in the first-stage variables y
and the second-stage variables x, and x may  involve both con-
tinuous and binary decisions. Due to this generalization, the
article presents a slightly different NGBD method. It also includes
additional discussion on how to reformulate functions involving
binary variables, for generating valid lower bounding problems
for NGBD.

3. Due to generalization of the problem formulation, both NGBD
and the piecewise convex relaxation methods are described
using a different notation system.

This paper is organized as follows: Section 2 gives a brief intro-
duction to the basic NGBD method. Section 3 presents a piecewise
convex relaxation framework for generating tighter bounds for
NGBD, and Section 4 discusses the integration of this framework
with NGBD. The benefit of the scenario formulation for addressing
uncertainty and the computational advantage of NGBD with piece-
wise convex relaxations are demonstrated through two  industrial
problems in Section 5. Section 6 concludes the paper and gives
suggestions for future work.

2. Nonconvex generalized benders decomposition

It is well known that Problem (P) can be solved by Benders
decomposition (BD) [9] or generalized Benders decomposition
(GBD) [10], if the functions in the problem are convex and the
operational decisions are continuous (although separability is
also usually necessary). In BD or GBD, the problem is solved
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