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a  b  s  t  r  a  c  t

An  established  method  for grey-box  identification  is  to use maximum-likelihood  estimation  for  the non-
linear case  implemented  via  extended  Kalman  filtering.  In applications  of  (nonlinear)  model  predictive
control  a more  and  more  common  approach  for the  state  estimation  is  to  use  moving  horizon  estimation,
which  employs  (nonlinear)  optimization  directly  on a model  for  a  whole  batch  of  data.  This  paper  shows
that, in  the  linear  case, horizon  estimation  may  also  be  used  for joint  parameter  estimation  and  state
estimation,  as  long  as  a bias  correction  based  on the Kalman  filter  is  included.  For  the  nonlinear  case
two  special  cases  are  presented  where  the  bias  correction  can be determined  without  approximation.  A
procedure  how  to approximate  the  bias  correction  for general  nonlinear  systems  is also  outlined.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

This paper ultimately deals with parameter estimation in non-
linear models. What triggers our interest is nonlinear model
predictive control [9]. While linear model predictive control has
long been an established industrial area, nonlinear MPC  has
only found industrial applications more recently, see for example
[8,22,23]. Partly, the limited applicability is related to modelling
and state estimation challenges. Since in MPC  an optimization
framework is already in place, it is natural to deploy this also for
the state estimation. This results in so-called moving horizon esti-
mation (MHE).

This paper will focus on some aspects that are important when
MHE of states is combined with parameter estimation of model
parameters. These parameters could be part of linear black box
model parameterizations, but could also be selected unknown
parameters of physical significance in a linear or nonlinear model.

� This paper is an extension of a keynote paper, [13], presented at DYCOPS 2013
by  the first author, which in turn refers to a conference paper, [12], presented at
SSS’09 by the first four authors.
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Estimation of such unknown parameters is known as Grey-box-
identification, see e.g. [3] or [18]. Nonlinear Grey-box identification
is typically approached in an off-line setting by maximum like-
lihood techniques. If process noise is present in the model, this
requires the difficult nonlinear prediction problem to be han-
dled. Typical approaches for this are approximate solutions with
extended Kalman filter, as detailed in [3] or with particle filtering,
e.g. [28].

We study here a different approach, namely to extend the com-
mon moving horizon state estimation solution [1,6,7,14,19,20,24,
25] with parameter estimation. Such an approach has also been dis-
cussed in, for instance, [17,30]. This tempting approach has some
fallacies, however, since biased parameter estimates may  result if
proper attention is not paid to the criterion formulation. We  explain
the root of this effect and show how it can be handled in the linear
model case. That also suggests a way  to treat the problem in the gen-
eral nonlinear case. We  illustrate the approach with an application
to a nonlinear drumboiler model.

2. Model predictive control

As the name model predictive control indicates a crucial element
of an MPC  application is the model on which the control is based.
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Therefore, before a controller can be implemented a model has to be
established. There are two main alternatives available for obtaining
the model.

• Deriving a model from first principles using laws of physics,
chemistry, etc.; so-called white-box modelling

• Estimating an empirical model from experimental data; black-
box modelling

In general, a white-box model becomes a DAE

0 = f (ẋ(t), x(t), u(t))

y(t) = h(x(t), u(t))

where y(t) denotes the measured process variables, and u(t) the
manipulated variable, i.e. the output of the MPC. Finally the internal
variable x(t) is what is usually referred to as the state of the system.

A black-box model on the other hand, is typically linear, but
most often also discrete in time

xk+1 = Axk + Buk

yk = Cxk

Here the integer k denotes the k:th time index for which the signal
value is available, i.e. at time kTs, where Ts is the sampling interval.
Hence, we have for example xk = x(kTs).

The core of MPC  is optimization. In each iteration of the control,
i.e. any time a new measurement is collected, two  optimization
problems have to be solved (both using the model as an equality
constraint); one using past data to estimate the current state vector
x(t) and one to optimize the future control variables. When solving
the forward optimization problem a number of future values of the
manipulated variables are calculated. However, only the values at
the first time instant are transmitted to the underlying process. At
the next time instant the optimizations are repeated, with the opti-
mization windows shifted one time step. This is known as receding
horizon control, and is in fact what makes this a feedback con-
trol method. Performing optimization just once would correspond
to open-loop control. The emphasis of this paper is on the second
step – the state estimation – which will be presented in some more
detail in the next subsection.

2.1. State estimation

For the state estimation the optimization target is to obtain the
best estimate of the internal variable x using knowledge of y and u,
to be used as starting point for the forward optimization. This can be
done using a Kalman filter (for an old classic see [2]) – or if the model
is nonlinear an extended Kalman filter see [15] – where stochas-
tic modelling of the process and measurement noises is applied. A
Kalman filter is a recursive method, meaning that it takes only the
most recent values of yk and uk to update the previous estimate
x̂k−1 to obtain the new x̂k. Hence, it does not actually solve an opti-
mization problem on-line. Kalman filtering is done in a statistical
framework by adding process noise and measurement noise to the
discrete-time state space system given in the previous section.

xk+1 = Axk + Buk + wk (1a)

yk = Cxk + vk (1b)

where wk and vk are white Gaussian noises with covariance matri-
ces Q and R respectively. Since we want to use certain quantities in
the calculation later, the complete set of Kalman filter equations is
given below:

Sk = CPk|k−1CT + R (2a)

Kk = Pk|k−1CT S−1
k

(2b)
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Fig. 1. Illustration of moving horizon estimation.

x̂k|k = x̂k|k−1 + Kk(yk − Cx̂k|k−1) (2c)

Pk|k = (I − KkC)Pk|k−1 (2d)

x̂k+1|k = Ax̂k|k + Buk (2e)

Pk+1|k = APk|kAT + Q (2f)

With access to more computational power, a much newer
and increasingly popular approach is to use so-called moving
horizon estimation (MHE). In MHE  the introduced process and
measurement noises are used as slack variables in an optimiza-
tion formulation. If the model is nonlinear, these slack variables
are usually introduced in a discretized version of the model.

xk+1 = g(xk, uk) + wk

yk = h(xk, uk) + vk

Moving horizon estimation then corresponds to minimizing

V = (xk−M+1 − x̂k−M+1)T P−1(xk−M+1 − x̂k−M+1)

+
k∑

n=k−M+1

wT
nQ−1wn + vT

nR−1vn (3)

with respect to all states xn within the horizon and possibly subject
to constraints as, for example,

xmin ≤ xn ≤ xmax

Here P, Q and R are weight matrices used for tuning of the esti-
mator, which have a similar interpretation and importance as the
estimate and noise covariance matrices in Kalman filtering. In the
minimization wn and vn are replaced by expression with xn, xn+1,
yn and un according to (3).

As indicated in its name, the optimization for moving horizon
estimation is typically done over a horizon of data [t − (M − 1)Ts, t],
where t is the current measurement time. Since this time interval
is in the past, we  assume access to historic values of the applied
manipulated variables uk and the measured process variables yk.
The first penalty term in the criterion, P−1, is called the arrival cost. It
is to create a link from one optimization window to the next, where
x̂k−M+1 denotes the estimate for this particular time instant from
the optimization run at the previous cycle. Fig. 1 tries to illustrate
the MHE  optimization which is a weighted sum of the vertical bars
in the upper and lower plots.

MHE  for estimating the states is an extensively studied field,
see [26] for a thorough overview. Much of the literature is related
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