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a  b  s  t  r  a  c  t

Recent  results  in  the  development  of  efficient  large-scale  nonlinear  programming  (NLP) algorithms  have
led to fast,  on-line  realizations  of optimization-based  methods  for nonlinear  model  predictive  control
(NMPC)  and  dynamic  real-time  optimization  (D-RTO),  with  predictive  nonlinear  dynamic  (e.g.,  first  prin-
ciple)  models.  For  NMPC,  optimization-based  controllers  are  developed  that  lead  to  well-understood
stability  and  robustness  properties,  even  for large,  complex  plant  models.  The  realization  of  NMPC
requires  the  application  of  a  fast  NLP  solver  for time-critical,  on-line  optimization,  as  well as efficient
NLP  sensitivity  tools  that require  2–3 orders  of  magnitude  less  computation  than  the NLP  solution.  This
leads  to advanced  step  NMPC  (asNMPC),  which  essentially  eliminates  computational  delay.  We  also
extend  these  capabilities  to dynamic  real-time  optimization  (D-RTO)  with  more  general  stage  costs  that
are economically  based.  This  overview  also  extends  input  to  state  stability  (ISS)  properties  for  asNMPC  to
handle  active  set  changes,  and  also  for D-RTO  through  convex  regularizations.  Two  large  scale  distillation
case  studies,  based  on nonlinear  first principle  models,  are  presented  that demonstrate  the  effectiveness
of  these  approaches.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

For over three decades, real-time optimization (RTO) and model
predictive control (MPC) have emerged as essential technologies for
optimal process operation in the chemical and refining industry.
More recently, MPC  has been extended to nonlinear model predic-
tive control (NMPC) in order to realize high-performance control of
highly nonlinear processes. Moreover, for many applications there
is a need for RTO to evolve from steady-state optimization mod-
els to dynamic models, especially for systems, such as batch and
cyclic processes, that are never in steady state. Both NMPC and
dynamic real-time optimization (D-RTO) allow the incorporation of
first principle process models, which lead to on-line optimization
strategies consistent with higher-level tasks, including scheduling
and planning. The realization of both of these tasks requires fast
optimization algorithms. A major concern is that computational
times needed to solve these large-scale optimizations lead to feed-
back delays in implementation that can degrade performance and
possibly destabilize the process. In addition, state estimation of
the process must be accomplished in a similar, efficient manner.
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Nonlinear model predictive control for tracking and so-called “eco-
nomic” stage costs, as well as associated state estimation tasks,
are reviewed, formulated and analyzed in considerable detail in
[46,36]. Due to advances described in [8,35], fundamental stability
and robustness properties of NMPC are well-known, and many of
the key issues related to the applicability and relevance of NMPC are
understood. Moreover, the availability of detailed dynamic process
models for off-line process analysis and optimization allows NMPC
to be realized on challenging process applications. Nevertheless,
an important hurdle is the cost and reliability of on-line compu-
tation; lengthy and unreliable optimization calculations lead to
unsuccessful controller performance.

Several advances to NMPC address the important problem
of computational delay. Newton-type strategies for constrained
nonlinear processes were originally proposed in [32]; here the non-
linear dynamic model is linearized around a nominal trajectory,
and a quadratic program (QP) is solved at every sampling time.
More recently, a real-time iteration NMPC was proposed in [11]
where only one Newton or QP iteration of the NLP is executed
on-line at every sampling time, instead of solving the NLP com-
pletely. More generally, NMPC strategies have been developed that
separate the optimization problem into an off-line NLP based on
predicted states, and fast on-line calculation for the actual state
[11,57,60,54,53,39,34]. In all of these cases, the dynamic model is
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optimized over a moving horizon and sensitivity-based updates are
made on-line.

The ability to perform nonlinear model-based control extends
naturally to dynamic real-time optimization (D-RTO). Current
practice in process applications decomposes economic optimiza-
tion into two  layers. First, real-time optimization (RTO) optimizes
an economic objective with steady state models, leading to a
setpoint handled by the lower-level control layer. The advanced
control layer (using, e.g., NMPC) then tracks the setpoint to achieve
a new steady state. However, this two-layer approach assumes that
model disturbances and transients are neglected in the RTO layer
[13]. Moreover, model inconsistency between layers and unre-
solved transient behavior may  lead to unreachable setpoints [48].
Also, since the control layer has no information on dynamic eco-
nomic performance, it may  generate trajectories that simply track
suboptimal setpoints to steady state [47,25].

Recent studies on dynamic real-time optimization (D-RTO) have
reported significant performance improvements with economi-
cally oriented NMPC formulations [59,47,13,2]. In addition, stability
theory supporting economically oriented NMPC requires develop-
ment beyond the mature results for setpoint tracking based on a
discrete Lyapunov analysis. This problem formulation and stabil-
ity analysis must be modified to ensure a stable and robust D-RTO
implementation, especially if optimum steady state operation is
expected.

Finally, knowledge of the plant state is essential for realiza-
tion of NMPC and D-RTO. In practice state information can only
be inferred through a set of noisy measurements, in combination
with the dynamic process model. For linear systems this is done via
Kalman filters (KF). Based on linearizations of the nonlinear plant
model, extended Kalman filters (EKF) have typically been applied
[26,7]. Moreover, when integrating EKF and NMPC, a local sepa-
ration principle has been established between the estimation and
control problems [23,24]. On the other hand, EKF may  have poor
performance for highly nonlinear systems [9,42], thus spawning
related estimation methods that include the unscented Kalman fil-
ter [28], the ensemble Kalman filter [14], and the particle filter
[4]. While none of these methods deal with bounds on the states,
recent extensions [51,50,43,42], have been developed to address
these features.

On the other hand, the state estimation problem can also be
formulated directly as an NLP through moving horizon estimation
(MHE), which uses a moving window of past measurements to
find the optimal state estimates with an objective function based
on maximum likelihood concepts. MHE  has very desirable asymp-
totic stability properties [45] with bounds on plant states handled
directly by the NLP solver. Efficient algorithms for MHE are pre-
sented in [49,60,58,1,33,37], which also address computational
delay.

A comprehensive survey of sensitivity-based concepts for MHE,
NMPC and D-RTO was presented in [5]. There we  addressed recent
results for NMPC, MHE  and D-RTO that are based on advanced step
concepts that particularly focus on efficient NLP algorithms for
background solutions, along with on-line updates based on NLP
sensitivity. This leads to asNMPC and asMHE, respectively. More-
over, recent MHE  and asMHE extensions to efficient updating of
arrival costs and outlier detection were developed and demon-
strated on a distillation case study.

This study builds on the survey in [5] and also focuses on
new results related to sensitivity-based NMPC and D-RTO. In the
next section we present the basic NMPC problem formulation and
review an optimization framework based on interior-point NLP
solvers and sensitivity concepts. Section 3 presents advanced step
NMPC (asNMPC) strategies and related stability properties. New
results for ISS stability that incorporate controller clipping to deal
with active set changes are also presented. Section 4 then describes

a multi-step extension of asNMPC that allows very large process
models to be solved in background over multiple time steps. This
approach is illustrated on a large-scale distillation example. Sec-
tion 5 then discusses recent updates for Economic NMPC properties
and demonstrates their impact with a D-RTO distillation case study.
Finally, Section 6 summarizes the paper along with directions for
future work.

2. NLP strategies for NMPC

We begin with the following discrete-time nonlinear dynamic
model of the plant with uncertainties:

x(k + 1) = f̂ (x(k), u(k), w(k))

= f (x(k), u(k)) + g(x(k), u(k), w(k))
(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and w(k) ∈ Rnw are the plant states,
controls and disturbance signals, respectively, defined at time steps
tk with integers k > 0. The mapping f : Rnx+nu �→ Rnx with f(0, 0) = 0
represents the nominal model, while the term g : Rnx+nu+nw �→ Rnx

is used to describe modeling errors, estimation errors and distur-
bances. f(· , ·) and g(· , · , ·) are continuous. We  assume that the noise
w(k) is drawn from a bounded set W.

With this model description, we  compute an estimate of the
current state x(k) that can be used for our model-based controller,
defined by the following NMPC problem:

JN(�0) := min
zl,vl

�(zN) +
N−1∑
l=0

 (zl, vl) (2a)

s.t. zl+1 = f (zl, vl) l = 0, . . .N − 1 (2b)

z0 = �0 (2c)

zl ∈ X, vl ∈ U, zN ∈ Xf . (2d)

Here �0 = x(k) and we  assume that the states and controls are
restricted to the domains X  and U, respectively. Xf is the termi-
nal set and Xf ⊂ X. We  assume that N is sufficiently long such that
zN ∈ Xf is always true for the solution of (2). The set U  is compact
and contains the origin; the sets X  and Xf are closed and contain
the origin in their interiors.

The stage cost is given by  (  · , · ) : Rnx+nu → R, while the ter-
minal cost is denoted by �(  · ) : Rnx → R. For tracking problems,
we can assume that the states and control variables can be defined
with respect to setpoint and reference values, and that the nominal
model has the property, f(0, 0) = 0.

After solution of (2) the control action is extracted from the
optimal trajectory {z∗0, . . .,  z∗N, v∗

0, . . .,  v∗
N−1} as u(k) = v∗

0. At the next
time step, the plant evolves as in (1) and we  shift the time sequence
one step forward, k = k + 1, obtain the next state estimate x(k + 1) and
solve the next NMPC problem (2). This recursive strategy gives rise
to the feedback law,

u(k) = �(x(k)) (3)

with �( · ) : Rnx → Rnu . With the feedback law (3) system (1)
becomes

x(k + 1) = f̂ (x(k), �(x(k)), w(k))

= f (x(k), �(x(k))) + g(x(k), �(x(k)), w(k))

= f (x(k), �(x(k))) + g(x(k), w(k))

(4)

Hence, we replace g(x(k), u(k), w(k)) with g(x(k), w(k)) since
u(k) = �(x(k)). We  refer to the above strategy as ideal NMPC (iNMPC),
where the on-line calculation time is neglected. Correspondingly
we denote the feedback law of iNMPC as uid(k) = �id(x(k)). iNMPC
has well-known stability properties (see [35,58]) that will be dis-
cussed in the next section. On the other hand, the computation
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