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a  b  s  t  r  a  c  t

This  paper  proposes  a bumpless  transfer  method  to  overcome  the  problem  of  switching  jumps  in  a
scheduled  robust  model  predictive  control  approach.  A scheduled  robust  model  predictive  controller
implements  a set  of  local  robust  model  predictive  controllers  based  on an on-line  switching  strategy.  This
method  could  enlarge  the domain  of  attraction  efficiently  but  the  transient  response  might  be hampered
by  spikes  appearing  at the  moment  of switching  between  adjacent  local  controllers.  The  proposed  algo-
rithm  could  enhance  the  transient  response  by  implementing  some  intermediate  controllers  augmented
to  the  main  control  scheme  to solve  the  problem  without  needing  more  computation.  The  efficiency  of
the  proposed  algorithm  is  illustrated  with  two  examples.
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1. Introduction

Industrial applications of model predictive controllers (MPC’s)
have increased monotonically in the recent years because of their
ability to handle those systems that have constraints on their vari-
ables, interactions among the continuous and logical subsystems,
and delays between inputs and outputs. These controllers provide
guaranteed stability in the most practical cases especially when the
system behaves almost linearly. However, they act inadequately on
nonlinear systems because of the computational complexity which
is important in on-line implementation of the controllers and also
lacking a guaranteed stability analysis [1]. In this context, Kothare
et al. [2] have proposed a robust model predictive controller (RMPC)
for constrained nonlinear systems which could be represented by
linear models with polytopic uncertainties. This method minimizes
an upper bound on the worst case infinite horizon objective func-
tion subject to input and state constraints instead of solving a
nonlinear optimization problem in nonlinear MPC  (NMPC) content
which generally involves high complexity. Moreover, the region of
stability of this controller is specified explicitly. These advantages
have provided an area with great potentials for further researches.

Meanwhile, some researchers investigated approaches to
decrease computational time and complexity [3,4], reduce
conservativeness [5–8], or simplify the representation of the
uncertainties [9–12]. In [9] the nonlinear system was represented
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by a linear model along with Lipschitz bounds on the nonlin-
earity approximation error which could somehow simplify the
model representation while increase the conservativeness of the
designed controller. Also [10] used this idea to introduce another
representation for RMPC formulation. Estimating the region of
stability for nonlinear control systems is an important issue.
Furthermore, finding approaches to enlarge this region is another
problem of interest [13–15]. In this regard, Wan  and Kothare [13]
have proposed scheduled RMPC that could enhance the stability
region efficiently. The proposed approach in [13] implements
the family of local RMPC’s for a set of equilibrium points with
appropriate overlaps in their regions of stability. This scheme acts
as a single scheduled RMPC that switches on-line between the local
controllers and achieves nonlinear transitions with guaranteed
stability. Similarly, [16] used linear quadratic regulators instead
of RMPCs as local controllers in the scheduled structure where a
control law regarding each local controller was computed off-line.
As a result, the on-line computational burden is reduced however
the performance may  degrade substantially. Switching among
multiple controllers in the scheduling control techniques may
produce non-smooth transient responses for manipulating signals
which could lead to mechanical damage, fatigue loading, or signal
saturations. Therefore it is undesirable in practical applications
where the bumpless transferring is an important issue [17,18].

In this paper the scheduling scheme presented in [13] is imple-
mented on an RMPC designed based on [10] in order to cover more
space in the operating region. Then the scheduling approach is
modified to alleviate the jumping problem in the transient response
occurs because of switching between multiple local controllers and
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enhances the overall control performance. In the proposed method
the off-line computations is similar to that in the scheduled RMPC
in [13], however a novel on-line switching strategy is implemented
to smooth the transient response.

The rest of the paper is organized as follows. In Section 2, the
intended modifications on the proposed RMPC approach in [10] are
discussed. The modified scheduling RMPC is described in Section
3. Section 4 presents the proposed bumpless approach. Section 5
studies two numerical examples in order to demonstrate the effec-
tiveness of the proposed method. Finally, conclusions are derived
in Section 6.

2. Design of an RMPC

In this section an RMPC formulation based on the corrected
version of method introduced in [10] is presented. Consider a
discrete-time nonlinear system as

x(k + 1) = f (x(k), u(k)), (1)

where u(k) ∈ Rm is the control input subject to |ur(k)| ≤ ur,max,
r = 1, 2, . . .,  m,  x(k) ∈ Rn is the state of the system subject to
|xr(k)| ≤ xr,max, r = 1, 2, . . .,  n, and f(· , ·) is considered a Lipschitz
and C1 function where f(0,0) = 0 (it is assumed that the origin is
the equilibrium of the system). The nonlinear model in (1) can be
reformulated as

x(k + 1) = Ax(k) + Bu(k) + f̃ (x(k), u(k)), (2)

where A = ∂f/ ∂x
∣∣
(0,0)

, B = ∂f / ∂u
∣∣
(0,0)

. Since f is a Lipschitz nonlin-

earity then f̃  (x(k), u(k)) = f (x(k), u(k)) − Ax(k) − Bu(k) is bounded
as

f̃ (x(k), u(k))T f̃ (x(k), u(k)) ≤ [x(k); u(k)]T LT L[x(k); u(k)], (3)

To regulate the system to the origin as the main control goal, it
is assumed that the pair (A,B) is stabilizable. The state feedback is
found by using MPC. In MPC  method a cost function is minimized to
optimize performance of the closed loop system for a time horizon
in the future. Usually the first computed control move is imple-
mented. Then based on the new measurements obtained from the
plant, the calculations are repeated at the next sampling times. To
determine a state feedback control law for u(·) in system (1), the
objective function is defined as follows

J(k) =
∞∑
i=0

x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k), (4)

where Q > 0, R > 0. x(k + i|k) is state at time k + i predicted based on
the measurements at time k, x(k), and u(k + i|k) is control move at
time k + i computed by minimizing J(k) at time k.

To solve the given optimization problem for the nonlinear sys-
tem in (1) via LMI, first one should replace equality in (4) by an
inequality which is done by defining an upper bound for J(k). Sup-
pose a quadratic function V(x) = xTPx with P > 0 and V(0) = 0 satisfies
the following inequality at sampling time k

V(x(k + i + 1|k)) − V(x(k + i|k)) ≤ −x(k + i|k)TQx(k + i|k)
− u(k + i|k)TRu(k + i|k). (5)

By summing both sides of (5) from i = 0 to i =∞ one finds that

x(∞|k)TPx(∞|k) − x(k|k)TPx(k|k) ≤ −J(k). (6)

For the asymptotic stability of the closed loop system, x(∞ |k)
must be zero and thus to have an asymptotic stability it follows
that

J(k) ≤ V(x(k|k)) ≤ �, (7)

where � is a positive scalar and is an upper bound for (4). As a result
the RMPC problem is defined as follows.

Theorem 1. Consider system (1) subject to
∣∣ur(k + i|k)

∣∣ ≤ ur,max,

i ≥ 0, r = 1, 2, . . .,  m and
∣∣xr(k + i|k)

∣∣ ≤ xr,max, i ≥ 1, r = 1, 2, . . .,  n. Let
x(k|k) be the measured state x(k) at sample time k that satisfies the
constraints. Then, the state feedback matrix F(k) in the control law
u(k + i|k) = F(k)x(k + i|k) that minimizes the upper bound V(x(k|k)) of
the objective function J(k) at time instant k is given by F = YG−1, where
G and Y are obtained from the solution of the following optimization
problem with variables M, G, Y, X, W,  �, � , and Z = [G ; Y] and ε is a
positive coefficient.

minM,G,Y,Z,X,W,�,�� (8)

subject to[
I x(k|k)T

x(k|k) M

]
≥ 0,

(9)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G + GT − M ∗ ∗ ∗ ∗√
(1 + ε)(AG + BY)  M ∗ ∗ ∗√

(1 + ε−1)LZ 0 �I ∗ ∗
Q1/2G 0 0 �I ∗
R1/2Y 0 0 0 �I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≥ 0, (10)

M − �I > 0, (11)

X − M ≥ 0 with Xrr ≤ x2
r,max, r = 1, 2, . . .,  n. (12)[

W Y

YT G + GT − M

]
≥ 0 with Wrr ≤ u2

r,max, r = 1, 2, . . .,  m. (13)

Proof. Consider the following lemma  to develop the proof.

Lemma  1. Let M̄ and N̄ be real constant matrices and P be a positive
matrix of compatible dimensions. Then M̄TPN̄ + N̄TPM̄ ≤ εM̄TPM̄ +
ε−1N̄TPN̄ holds for any ε > 0.

Proof. See [9] for the proof and finding the optimal value for ε.�

By applying Schur complements to V(x(k|k)) ≤ � in (7) and sub-
stituting P = � M−1, (9) is derived. To obtain (10), (5) can be rewritten
as

x(k + i + 1|k)TPx(k + i + 1|k) − x(k + i|k)TPx(k + i|k)
+ x(k + i|k)TQx(k + i|k) + u(k + i|k)TRu(k + i|k) < 0. (14)

Based on Lemma  1, the following inequality is derived for the
first term in (14).

x(k + i + 1|k)TPx(k + i + 1|k)

= (Ax(k + i|k) + Bu(k + i|k) + f̃ (x(k + i|k), u(k + i)))
T
P(Ax(k + i|k)

+Bu(k + i|k) + f̃ (x(k + i|k), u(k + i|k)))
≤ (1 + ε)(Ax(k + i|k) + Bu(k + i|k))TP(Ax(k + i|k) + Bu(k + i|k))
+(1 + ε−1)f̃ (x(k + i|k), u(k + i|k))TPf̃ (x(k + i), u(k + i|k)). (15)

By considering P < �I (� is the largest eigen value of P) and using
(3) and (15), (14) can be expressed as
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