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a  b  s  t  r  a  c  t

An  approach  to  multi-rate  distributed  control  design  for  process  networks  is  presented,  where  the  local
measurements,  local  control  and controller  communication  are allowed  to operate  at  different  sampling
rates.  Dissipative  systems  theory  is used  to  facilitate  stability  and  performance  analysis  of  the  process
network,  based  upon  dynamic  supply  rates  which  have  been  lifted  into  a global  sampling  rate.  Quadratic
difference  forms  are  used  as  supply  rates  and storage  functions,  leading  to less conservative  stability
and  performance  conditions  as compared  to  classical  types  of  supply  rates.  These  theoretical  results  are
illustrated  by  a  case  study  of  a heat  exchanger  network.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Control of chemical process networks is characterized by their scale, strong interactions, transport delays, and differing dynamics of each
process unit (possibly on different time-scales) [1]. The scale of the problem means that centralized control approaches, whilst potentially
offering high performance, may  be impractical or even infeasible. A logical alternative may  then be decentralized control, whereby local
controllers make local control decisions based on local information only. A large number of approaches for analysis and design of such
control systems have been reported in the process control literature, e.g. [2–5]. A difficulty of this approach, however, is that the interaction
effects between process units are not explicitly captured, thus leading to potentially conservative results. This is particularly relevant in
process control, where the process units may  interact strongly. These strong interactions are often caused by material recycle and heat
integration [1], which may  be viewed as positive feedback loops within the process network. These deficiencies motivate investigation into
distributed control strategies, wherein local controllers communicate with one another to improve performance of the process network.
Distributed control offers the simplicity of decentralized control design, combined with high levels of performance as in centralized control.
In particular, distributed model predictive control (MPC) has been an area of considerable interest recently in the literature, see for example,
[6–10]. A particularly interesting aspect of distributed MPC  approaches is their ability to achieve global performance and stability with
respect to constraints.

Another key issue in plant-wide control design is the selection of the controlled variables, and subsequent pairing with the manipulated
variables. The latter problem has been traditionally handled by approaches such as the relative gain array, which provides an easily
calculated measure for loop pairing [11]. More recently, this concept has been extended to consider process dynamic information [12], and
economic considerations through the relative exergy array [13]. An interesting approach to controlled variable selection is self-optimizing
control, whereby a set of controlled variables is selected such that the process is kept close to its optimum in spite of disturbances or errors
with constant setpoints [14]. Based on this, a thorough approach to control structure selection is presented in [1]. It is important to note
that this issue is somewhat independent of, but complementary to, the design of the individual decentralized controllers. This paper is
concerned with the design of the individual controllers once the controlled variables and pairing has been carried out. As such, any existing
methods for control structure selection may  be carried out in unison with the proposed approach (see for example [1,15,16], or the reviews
[17,18] for more examples).

The focus of this work is to address the issue of distributed multi-rate control of process networks. This is motivated by the fact that many
process units can have different time constants (due to, for example, different volumes, heat transfer areas or flow rates), thus requiring
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multiple sampling rates to avoid over or under sampling. It may  also be preferable to sample critical variables at a higher rate than non-
critical ones to decrease capital costs, or due to sensor limitations, requiring different processes and controllers or different controller
input and output channels to have different sampling rates, for example, pressure and temperature are measured at different rates. In
addition, the local measurement and control action ports, and remote communication ports of each controller may  have different sampling
rates. The proposed distributed multi-rate control approach will allow for the information exchange rate in the controller communication
network to be slower than the sampling rates of local sensors and actuators, thus, reducing network traffic. This can be relevant for control
systems for process networks, where certain network structures (i.e. recycle loops) are known to induce plant-wide dynamics on a slower
time-scale than the individual units [19].

There are a number of distributed multi-rate control approaches reported in the literature. For example, a Kalman filter based distributed
MPC approach is developed in [20]. In [21], a distributed multi-rate control approach is developed, where an interesting observation
was made that the distributed approach had a larger stability region as compared to the centralized case. In [22], the passivity of the
communication is used to ensure stability regardless of (fixed) communication delay. An approach with specific application to chemical
process networks is presented in [23], where the decomposition of the network (into sub-units) is partially guided by the plant flow sheet,
leading to an intuitively appealing approach, an advantage that is shared with this proposed approach. More multi-rate approaches in
the context of chemical process control, although not distributed approaches, may  be found in [24–28]. The advantage of the proposed
approach is that it provides a scalable approach to distributed multi-rate control. However, it does assume that the sampling rates of the
subsystems are constant.

In this paper, dissipative systems theory is used to facilitate stability and performance analysis of the process network. Dissipativity
is fundamentally an input-output property of systems, which together with the topology of process network, can be used to analyze
plant-wide interaction effects (e.g., [29–32]). These approaches are scalable, as the dissipativity properties of the process network may  be
determined as a linear combination of that of the individual processes and controllers when the network structure is taken into account. The
proposed approach shares these advantages with aforementioned methods. It differs, however, in that a more general type of dissipativity is
used. Quadratic difference forms (QdFs) are used as dynamic supply rates and storage functions, leading to much less conservative stability
and performance conditions as compared to classical types of supply rates [33]. To deal with multiple sampling rates, the dynamic supply
rates of individual process units are lifted into a global sampling rate. In addition, in the proposed work the dissipativity of the process
network is formulated at an open-loop level, rather than as a network of closed-loop systems as in [32], providing a flexible approach that
deals with arbitrary control network structures.

The results presented here may  be viewed as an extension to those in [34] to multi-rate control. In the current paper it is assumed that
there is no time-delay in the controller communication, or that it is time invariant. In some cases this is a valid assumption as compared
to the time scale on which process systems operate, modern communication systems are very fast. Distributed control with asynchronous
state measurements is considered in [35] using the Lyapunov model predictive control technique recently developed by Christofides et al.
[36]. This approach assumes that there is no delay in the controller communication or process interconnection, however. Conversely, a
decentralized control approach designed specifically to handle uncertain time-delays in the process interconnections was presented in
[37]. Decentralized adaptive control has also been proposed as a solution to time-varying delays in process networks, [38], which has
the advantage of also being able to handle process nonlinearities. Time varying delays in the process and/or communication network
(but not varying time-delays in the process measurements) has been studied by the authors previously in the context of dissipativity
based distributed control [39], and controller communication failure in [40]. A related approach for uncertain time-delays is the integral
quadratic constraint based approach presented in [41]. The relationship between integral quadratic constraints and quadratic differential
forms is discussed in [42]. The approach proposed in the current paper can be applied concurrently with the previous developments of the
authors allowing for these issues to be tackled alongside of multi-rate control. Whilst the focus of this work is on distributed control, fully
decentralized and centralized control may  also be considered in this framework, leading to a holistic approach to control of networks.

Some notation used in the remainder of this paper is briefly introduced. A > (≥)0 for a symmetric matrix A, implies that A is positive
definite (semidefinite), similarly A > B ⇔ (A − B) > 0. diag(A1, . . .,  An) denotes the formation of a block diagonal matrix with Ai as its ith block
diagonal entry and zeros elsewhere. ‖ . ‖ 2 denotes the 2-norm of a vector. �(�, �) ∈ R

n×m(�, �) denotes an n × m dimensional two variable
polynomial matrix in the indeterminates � and � with real coefficients. The degree of such a matrix, denoted by deg(�) is defined as the
maximum power of � and � appearing in any element of �(�, �). Analogously, �(�) ∈ R

n×m(�) denotes a one-variable polynomial matrix
with real coefficients. The operator ∂ takes a two-variable polynomial matrix and produces a one-variable polynomial matrix, that is,
∂�(�) = �(− �, �). The inertia of a matrix is a triple (q−, q0, q+) referring to the number of negative, zero and positive eigenvalues. � denotes
that forward shift operator, thus �nv(t) = v(t + n).

The remainder of this paper is structured as follows, in Section 2 some required background material is presented. Following this, in
Section 3 the multi-rate dissipativity based analysis and control design framework is presented. A case study is presented in Section 4,
followed by some concluding remarks.

2. Background and preliminaries

As an input-output property of systems, dissipativity is useful in studying interconnected systems as it allows for much of the com-
plexity of the problem to be shifted to the interconnection relations, rather than studying centralized models. Once the dissipativity of the
subsystems is ascertained, the dissipativity based analysis for complex networks can be performed easily, yielding a scalable approach.
First introduced in [43], a discrete time dynamical system with input, output and state u ∈ R

p, y ∈ R
q and x ∈ R

n respectively is said to be
dissipative if there exists a function defined on the input and output variables, called the supply rate s(u, y) and positive semi-definite
function defined on the state, called the storage function V(x(t)) such that:

V(x(t + 1)) − V(x(t)) ≤ s(u(t), y(t)) (1)

for all time steps t. The following (Q, S, R)-type of supply rate is commonly used:

s(u(t), y(t)) = yT (t)Qy(t) + 2yT (t)Su(t) + uT (t)Ru(t). (2)
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