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a  b  s  t  r  a  c  t

This  paper  reports  the design  of  a  fractional  linear  system  under  stochastic  inputs/uncertainties.  The
design  methods  were  based  on the  hybrid  spectral  method  for expanding  the  system  signals  over  ortho-
gonal  functions.  The  use  of  the  hybrid  spectral  method  led to  algebraic  relationships  between  the  first  and
second order  stochastic  moments  of  the  input  and  output  of a  system.  The  spectral  method  could  obtain
a  highly  accurate  solution  with  less  computational  demand  than  the  traditional  Monte  Carlo  method.
Based  on  the  hybrid  spectral  framework,  the  optimal  design  was  elaborated  by  minimizing  the  suitably
defined  constrained-optimization  problem.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In recent years, fractional calculus has attracted considerable
attention and is becoming increasingly popular because of its prac-
tical applications in a range of science and engineering fields [1–5].
This is because mathematical models based on fractional deriva-
tives can describe a variety of natural phenomena, such as flexible
structures [6], anomalous system [7], and viscoelastic materials
[8]. On the other hand, fractional order systems are often stud-
ied using models with fixed deterministic parameters and inputs.
Moreover, the input/parameters of these models are uncertain due
to the inherent variability and/or incomplete knowledge. There-
fore, the development of methods capable of designing fractional
order systems with uncertainties is necessary.

The well-known Monte Carlo (MC) method is a typical approach
for simulating stochastic models [9,10]. This method involves the
generation of independent realizations of random inputs based
on their prescribed probability distribution. For each realization,
the data is fixed and the problem becomes deterministic. Solving
the multiple deterministic realizations builds an ensemble of
solutions, i.e. the realization of random solutions, from which
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statistical information can be extracted, e.g. mean and variance.
This approach is simple to apply, involving only repeated determi-
nistic simulations, but the convergence is slow and large numbers
of calculations are required. For example, the mean values typically
converge as 1/

√
M, where M is the number of realizations.

Generalized polynomial chaos (gPC) [11–13] is a more recent
approach for quantifying the uncertainty within system models.
On the other hand, to simulate stochastic systems using the gPC
method, the random inputs of many systems involve random
processes approximated by truncated Karhunen–Loeve (KL) expan-
sion, and the dimensionality of the input depends on the correlation
lengths of these processes. For an input with a low correlation
length (ideal white noise), the number of dimensions required for
an accurate representation can be large, which increases the com-
putational demand substantially using the gPC method.

A recent study [14] introduced a hybrid spectral method for
quantifying the uncertainties in single input single output (SISO)
fractional order systems. This paper extends the framework in
Ref. [14] for the optimal design of a fractional SISO system under
stochastic input/parametric uncertainty.

This paper is organized as follows: Section 2 briefly introduces a
hybrid spectral method for uncertainty quantification in fractional
order systems. Section 3 defines the suitable performance objec-
tives coupled with the spectral method for the design of a stochastic
linear fractional system. Section 4 considers examples ranging from
integer to fractional order to demonstrate the proposed method.
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2. Fractional order system

This section summarizes the main concepts, definitions and
basic results from fractional calculus, which are useful for further
developments.

2.1. Governing equation for system dynamics

Among the many formulations of the generalized derivative
with non-integer order, the Riemann–Liouville definition is used
most commonly [15]

D˛0 f (t) = 1
� (m − ˛)

(
d

dt

)m t∫
0

f (�)

(t − �)1−(m−˛)
d�, (1)

where � (x) denotes the gamma  function; m is the integer satisfying
m − 1 <  ̨ < m.

The Riemann–Liouville fractional integral of a function f(t) is
defined as

I˛0 f (t) = 1
� (˛)

t∫
0

f (�)

(t − �)1−˛ d�. (2)

The Laplace transform for a fractional order derivative under
zero initial conditions is defined as

L{D˛0 f (t)} = s˛F(s), (3)

where F(s) is the Laplace transform of f(t).
Therefore, a fractional order single input single output (SISO)

system can be described by the following fractional order differen-
tial equation

a0D
˛0
0 y(t) + a1D

˛1
0 y(t) + · · · + alD

˛l
0 y(t) = b0D

ˇ0
0 u(t)

+ b1D
ˇ1
0 u(t) + · · · + bmD

ˇm
0 u(t), (4)

or by the transfer function,

G(s) = Y(s)
U(s)

= bmsˇm + · · · + b0sˇ0

als
˛l + · · · + a0s˛0

, (5)

where ˛i and ˇi are the arbitrary real positive numbers, and u(t)
and y(t) are the system’s input and output, respectively.

2.2. Operational matrices of block pulse function for analysis of
fractional order system

Block pulse functions are a complete set of orthogonal functions
that are defined over the time interval, [0, �],

 i =

⎧⎨
⎩

1
i − 1
N
� ≤ t ≤ i

N
�

0 elsewhere
.  (6)

where N is the number of block pulse functions.
Therefore, any function that can be absolutely integrated on the

time interval [0, �] can be expanded into a series from the block
pulse basis:

f (t) = �TN(t)Cf =
N∑
i=1

cfi i(t), (7)

where �T
N(t) = [ 1(t), . . .,   N(t)] constitutes of the block pulse

basis. From here, the subscript, N, of �T
N(t) is dropped out for the

convenience of notation.

The expansion coefficients (or spectral characteristics) can be
calculated as follows

cfi = N

�

(i/N)�∫
[(i−1)/N]�

f (t) i(t)dt. (8)

Furthermore, any function g(t1, t2) absolutely integrable over
the time interval, [0, �] × [0, �], can be expanded as

g(t1, t2) =
N∑
i=1

N∑
j=1

cij i(t1) j(t2) = �T (t1)Cg�(t2). (9)

with expansion coefficients (or spectral characteristics) of

cij =
(
N

�

)2
(i/N)�∫

[(i−1)/N]�

(i/N)�∫
[(i−1)/N]�

g(t1, t2) i(t1) j(t2)dt1dt2. (10)

Eq. (2) can be expressed in terms of the operational matrix [16],

I˛0 f (t) = �(t)TA˛Cf . (11)

where the generalized operational matrix integration of the block
pulse function, A˛, is

A˛ = PT˛ =
(
�

N

)˛ 1
� (  ̨ + 2)

⎛
⎜⎜⎜⎜⎝

f1 f2 f3 · · · fN

0 f1 f2 · · · fN−1

...
. . .

. . .
. . .

...

0 . . . . . . . . . f1

⎞
⎟⎟⎟⎟⎠

T

. (12)

The elements of the generalized operational matrix integration
can be expressed as

f1 = 1; fp = p˛+1 − 2(p  − 1)˛+1 + (p − 2)˛+1 for p = 2, 3 . . .

(13)

The generalized operational matrix of a derivative of order  ̨ is

B˛A˛ = I, (14)

where I is the identity matrix.
The generalized operational matrix of the derivative can be used

to approximate Eq. (1) as follows:

D˛0 f (t) = �(t)TB˛Cf . (15)

Using the operational matrix of the fractional order derivative,
Eq. (4) can be rewritten in the following form:

AG = (alD˛l + · · · + a0D˛0 )−1(bmDˇm + · · · + boDˇo ). (16)

The input and output of the system is thus linked by

CY = AGCU ; Y(t) = (CY )T�(t); U(t) = (CU)T�(t). (17)

Closed-loop control systems normally comprise several ele-
ments, such as the controller and plant in Figs. 1 and 2, in terms
of the transfer function and operational matrix, respectively. The
operational matrix of a closed-loop system can be found using block
diagram algebra similar to the block algebra used for the transfer
function [10].

More on detail on the operational matrix with respect to the
different polynomial functions can be found in [16,17] and the
references therein.



Download English Version:

https://daneshyari.com/en/article/688810

Download Persian Version:

https://daneshyari.com/article/688810

Daneshyari.com

https://daneshyari.com/en/article/688810
https://daneshyari.com/article/688810
https://daneshyari.com

