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a  b  s  t  r  a  c  t

Control  of  self-assembling  systems  at the micro-  and nano-scale  provides  new  opportunities  for  the
engineering  of  novel  materials  in  a bottom-up  fashion.  These  systems  have  several  challenges  associ-
ated  with  control  including  high-dimensional  and  stochastic  nonlinear  dynamics,  limited  sensors  for
real-time  measurements,  limited  actuation  for control,  and  kinetic  trapping  of the  system  in  undesirable
configurations.  Three  main  strategies  for addressing  these  challenges  are  described,  which  include  par-
ticle  design  (active  self-assembly),  open-loop  control,  and  closed-loop  (feedback)  control.  The  strategies
are  illustrated  using  a variety  of  examples  such  as  the  design  of patchy  and  Janus  particles,  the toggling
of  magnetic  fields  to induce  the  crystallization  of  paramagnetic  colloids,  and  high-throughput  crystal-
lization  of  organic  compounds  in  nanoliter  droplets.  An  outlook  of  the  future research  directions  and  the
necessary  technological  advancements  for  control  of micro-  and  nano-scale  self-assembly  is  provided.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Self-assembly is a process in which particles spontaneously
arrange into complex patterns or organized superstructures
[1]. Systems with self-organizing characteristics are commonly
encountered in nature and engineered technologies, where par-
ticles can be of all scales ranging from molecules in a crystal to
cells in a tissue to planets in a galaxy [2]. Bottom-up engineer-
ing of self-assembly systems enables manufacturing materials and
devices with novel optical, mechanical, and electronic properties.
The innovative applications of self-assembly at the micro- and
nano-scales have sparked interest in understanding the physics,
dynamics, and implementation of self-organizing systems. Control
of self-assembly processes is key to the manufacture of materials
with unique properties.

This paper aims to provide an overview on the recent progress
of controlling self-assembly of micro- and nano-scale systems.
Controlled self-assembly implies promoting or accelerating the
organization of particles towards desired structures. Intervention is
expected in a self-organizing process, for example, by changing the
particle interactions [3,4] or by manipulating the environment (i.e.,
global system variables) in which self-assembly takes place [5–7].
This idea is often called “directed self-assembly” [8,9]. The concept
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should be distinguished from “directed assembly”, which refers to
the precise manipulation of particles one-by-one during the con-
struction of the structure (like a mason building a brick wall) [5].
Directed assembly at the microscale is now considered standard
manufacturing technology such as in three-dimensional printing
(see e.g., [10–12] and the citations therein). In addition, directed
assembly was  recently demonstrated at the nanoscale by mov-
ing particles using the tip of an atomic force microscope [13,14].
Directed assembly has a very strong bottleneck from a manufac-
turing point of view due to the limiting speeds at which you can
manipulate the building blocks of the system. For example, a rea-
sonable estimate for the printing speed of a three-dimensional
printer with resolutions on the micro- to macro-scale is ∼1 cm/s
[15]. Assuming nanometer resolution is attainable with this prin-
ting speed, it would take ∼1014 s to print a device of 1 cm3 volume
with nanometer precision. Although directed assembly is a very
active area of research, the topic is beyond the scope of this
paper.

In the attempt to control self-assembly systems, many practical
difficulties arise that are associated with the small-scale character-
istics of the systems, which limit current technology and practice.
This article outlines the major challenges in the control of self-
assembly systems. Promising research directions in the areas of
active self-assembly, open-loop control, and closed-loop control
are motivated using examples from the literature. The paper con-
cludes with perspectives on the research outlook of control of
self-assembly systems.
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2. Challenges

2.1. High-dimensional stochastic nonlinear dynamics

In macroscopic systems, measured variables (i.e., outputs) typi-
cally are stochastic due to sensor noise and unknown disturbances
arising from environmental fluctuations in variables (e.g., tem-
perature) acting on the system. Isolated stochastic terms can be
included in deterministic models to account for this behavior on
the macroscale [16]. In other words, the measured outputs of
macroscale systems are most often deterministic in the absence
of noise and unknown disturbances.

Micro- and nano-scale systems are different in that their
underlying phenomena are inherently stochastic so that repeated
experiments can produce different results even if the system has
no noise or unknown disturbances [17]. This inherent stochastic-
ity can greatly impact the self-assembly of particles at these scales.
For example, self-assembly of colloidal particles (at fixed condi-
tions) can require excessively long periods of waiting time before
initiation of the first step of the process (e.g., nucleation) needed to
make a product, due to the first step having a high-energy activation
barrier [5]. Another example is a microfluidic platform that uses
evaporation to induce crystal nucleation of organic compounds
such as amino acids and proteins [18,19]. The measured output
for a single droplet is the induction time (i.e., the time at which the
first crystal nucleates) and is best represented as an induction time
distribution due to the stochastic nature of the system.

Stochastic dynamics with continuous states are typically
described by Langevin equations [20–22], which describe the time
evolution of a group of variables that change slowly relative to
other variables in the system. The original Langevin equation was
derived as a modification to Newton’s equations of motion to
include Brownian motion and frictional drag due to collisions of
particles (slow variables) with the solvent (fast variables). This sys-
tem can be formulated as a stochastic differential equation (SDE)
of the form [23]

dXt = �(Xt , t)dt + �(Xt , t)dWt , (1)

where Xt ∈ R
n denotes an n-dimensional stochastic process,

� = (�1, . . .,  �n) denotes the drift vector, Wt denotes an m-
dimensional Weiner process (i.e., Brownian motion), and � = [�ij]
is directly related to the diffusion tensor D = [Dij] with elements

Dij(Xt , t) = 1
2

m∑
k=1

�ik(Xt , t)�jk(Xt , t). (2)

This SDE is nonlinear and difficult to solve directly. Methods such as
Monte Carlo simulation or Molecular Dynamics (MD) are available
for obtaining time-averaged quantities of interest while avoiding
direct simulation of (1). However, these methods are very compu-
tationally expensive and are only able to simulate complex systems
for a very short period of time.

The dynamics of self-assembling systems involve the evolution
of hierarchical components at different time scales due to their
architecture (e.g., atoms make up proteins, proteins make up cap-
somers, and capsomers make up viral capsids [24]). Eq. (1) alone
cannot describe this behavior; instead, a multiscale approach is
required (e.g., see [25]). However, multi-scale modeling approaches
are very computationally expensive, taking on the order of days to
simulate a relatively small self-assembly system (a system consist-
ing of ∼50 particles) using standard personal computers.

For systems with a discrete number of possible states, the
stochastic dynamics are described by the Master equation [26,27]

dP�

dt
=

∑
�′

w�′→�(t)P�′ (t) −
∑

�′
w�→�′ (t)P�(t), (3)

where P�(t) denotes the probability that the system is in config-
uration � at time t and w�′→�(t) denotes the rate of transition
from configuration � ′ to configuration � at t. The overall system
is described by writing (3) (i.e., conservation equation for prob-
ability of configuration �) for every possible configuration of the
system. The probabilities can be stacked into a state vector x(t) and
the transition rates collected into a matrix A(t, u(t) ; p) so that (3)
can be written in the state-space form

dx

dt
= A(t, u(t); p)x(t), (4)

where A(t, u(t) ; p) depends on time-varying variables (e.g., temper-
ature), system inputs (i.e., manipulated variables) u(t), and model
parameters p such as chemical kinetic rate constants, diffusion
coefficients, and thermodynamic properties of the system.

The main challenge in implementing control systems for pro-
cesses modeled by (4) is that the number of states is usually very
large (usually much greater than 1010) for processes of practi-
cal importance [17]. Kinetic Monte Carlo (KMC) simulations are
commonly used to approximate the solution of (4) by computing
specific realizations of the Master equation. This approach uses calls
from a random number generator to select a specific event to occur
from a queue of all possible events, along with its corresponding
time step, so that the time simulated in the KMC  algorithm corre-
sponds to real time [26]. Although this approach is usually much
faster than solving (4) directly, KMC  simulations can still take in the
order of days for realistic systems. If state or output distributions
are required for control, then a large number of KMC  simulations
are needed, which makes real-time control infeasible even for rel-
atively simple systems. If the control objective depends only on
coarse statistics of the distribution, then one approach is to develop
low-order “equation free” models (e.g., [28,29]) by fitting the KMC
simulation results; however, the relationship between the manipu-
lated variables and the system states in these models will no longer
be transparent, making control less intuitive and more black box in
nature [17].

2.2. Limited sensors for real-time measurements

Controlling self-assembly systems at the micro- and nano-scale
requires the acquisition of real-time information about the system
status. This requirement leads to the needs of advanced real-time
sensing techniques, while traditional self-assembly systems often
rely on imaging or other characterization techniques performed
after the assembly process to measure the local properties (e.g.,
using transmission electron micrographs to inspect the morphol-
ogy in a self-assembling block copolymer system [30]).

Several factors result in real-time sensing in self-assembly sys-
tems being a challenge, including the small length scales, the
slow and invasive nature of most observation techniques, and the
limited variables that can be used to quantify the system status. For
crystallization in a nanoliter droplet implemented in a microflu-
idic platform [18,19,31], the small scale of the system inhibits
implementing conventional methods of probing the solute concen-
tration. While visual observation of the dynamics in self-assembled
systems could be accessible through advanced microscopes (such
as the fluorescent imaging technique used to track the real-time
movement and clustering of Janus particles [32]), such information
has to be translated into a variable that can represent the assembly
status for control.

2.3. Limited actuation for control

Another challenge that naturally arises in controlling self-
assembly systems is the limited availability of actuators. For a
micro- or nano-scale self-assembly system, localized manipulation
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