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a  b  s  t  r  a  c  t

Since  the  seminal  work  of  Smith,  predictor  structures  have  been  used  to control  processes  with  dead-time.
Predictors  allow  the  control  of this  type  of  process  with  a  delay-free  nominal  model,  which  simplifies
the  control  design.  In this  paper,  a nonlinear  filtered  Smith  predictor  (NLFSP)  structure  is proposed  for
systems  with  input  nonlinearities.  It is  shown  that the  NLFSP  maintains  the  characteristics  of  the  linear
filtered  Smith  predictor  and that  with  appropriate  tuning,  it can  increase  the  robustness  of the  closed-
loop  system  or improve  the  disturbance  rejection  response.  The  NLFSP  is  applied  to  a  simulated  CSTR
process  to demonstrate  these  characteristics.
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1. Introduction

As pointed out by Palmor in [1], three are the main difficul-
ties introduced by the delay: (i) effects of the disturbances are not
noticed until the dead-time has elapsed, (ii) the effect of the control
action takes some time to be noticed in the controlled variable, and
(iii) the control action that is applied based on the actual error tries
to correct a situation that originated some time before.

Since the seminal work of Smith [2], one solution to avoid (or
attenuate) these effects is the use of the Smith predictor (SP).
Predictors are structures which allow the control of dead-time pro-
cess with a delay-free nominal model, which simplifies the control
design of the so called primary controller [1,3]. An important prop-
erty of the Smith predictor comes from the fact that robustness
margins are not related with nominal dead-time value. This char-
acteristic is very interesting since it is not necessary to consider
nominal dead-time length from a robust stability point of view. This
property, however, does not hold for any predictor. For instance,
model predictive controllers (MPC) algorithms implicitly define a
predictor structure, but, as was shown in [4] for the specific case
of the generalized predictive control (GPC), the implicit optimal
predictor makes the stability margins of the controller depend-
ent on the nominal dead-time. This kind of problem is related to
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the implicit disturbance model and observer. Also in [4], it was
shown that substituting the implicit predictor by an explicit SP
based predictor resulted in a more robust controller that inherited
the advantageous characteristics of the SP.

Predictors for nonlinear systems are discussed in various works.
In [5–7], the authors propose a predictor-based controller to sta-
bilize the process with input time-delay, where the delay can be
time-varying and state-dependent. However, the proposed pre-
dictor structure does not guarantee an offset-free prediction for
constant disturbances, which compromises the reference tracking
capabilities of the closed-loop system. In [8], the SP is applied to
a class of nonlinear systems, but the analysis of the predictor is
made in conjunction with the proposed globally linearizing con-
trol (GLC) strategy, which linearizes the process, thus allowing the
use of mathematical tools for linear systems. In [9], the authors
follow the idea presented in [8], and extend the SP to a more gen-
eral nonlinear system model, but, because of how the SP handles
disturbances, this structure was  dropped in favor of a Kalman filter
based predictor, but the effects of the tuning parameters on robust-
ness is not thoroughly analyzed. In [10], the SP is used to control
a nonlinear system through a network, which causes a time-delay,
but the system is locally controlled by a linearizing compensator,
hence a linear SP is used.

Following the ideas presented in [4] for the linear case, in this
work a nonlinear filtered Smith predictor (NLFSP) will be proposed
to improve robustness of dead-time systems with input nonlineari-
ties. The proposed NLFSP presents the same properties as the linear
FSP, i.e., nominal set-point performance is not affected by the filter,
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robustness can be improved by a suitable tuning of the predictor
filter and it can also be applied to unstable processes [11]. The use
of the FSP with nonlinear processes was presented in [4], and appli-
cations can be found in [12,13], but no theoretical analysis is made
in these works. Thus, in this paper, the properties of the NLFSP will
be proved for a class of nonlinear systems using recent nonlinear
systems’ theory in a way that the predictor structure can be studied
independently of the primary control law that will be applied.

The rest of the paper is organized as follows. In Section 2 the
general dead-time system equation with input nonlinearities will
be described, including some specific models commonly used to
represent this type of systems. In Section 3 the optimal predictor
will be analyzed and in Section 4 the NLFSP will be introduced. Sim-
ulation results will be presented in Sections 5 and 6 to illustrate the
advantages of the NLFSP and, finally, the conclusions are given in
Section 7.

2. System description

This work considers the control of processes that can be modeled
by an uncertain time-invariant discrete dead-time system with
input nonlinearities given by

x(k + 1) = Ax(k) + g(u(k − d)) + w(k), (1)

where A is a square matrix with dimension n, x(k) ∈ R
n is

the state vector for the system, g(.) is a nonlinear function g :
R

m → R
n, u(k) ∈ R

m is the control vector at time k in a way
that u(k − d) = [u(k − d), u(k − d − 1), . . .,  u(k − d − m)]T, w(k) is the
unmeasurable additive disturbance, and d is the dead-time. It is
assumed that |g(u)| =∞ ⇔ |u| = ∞.

Notice that w(k) is an unmeasurable signal at instant k that can
describe any kind of mismatch between the measured state at k + 1
and its expected value at k, including model mismatch and unmea-
surable process disturbances [14]. Its value can only be known at
time k + 1, where w(k) is computed as

w(k) = x(k + 1) − (Ax(k) + g(u(k − d))). (2)

For this kind of description, closed-loop stability implies that
w(k) can be bounded by a compact set.1

The aim of this paper is to propose a robust dead-time compen-
sation for systems with input nonlinearities which is able to: (i)
keep the Smith predictor main advantages (the controller can be
designed using a delay-free nominal model and good robustness
characteristics), (ii) avoid Smith predictor original drawbacks (slow
disturbance rejection and requirement of open-loop stable pro-
cesses), (iii) reduce, or even eliminate, the nominal dead-time effect
over closed loop robustness. But first, it is necessary to describe the
systems on which the proposed theory can be applied.

2.1. Models with input nonlinearities

Nonlinear models are usually used when it is required a better
representation of the system dynamics for optimal performance,
e.g., it is not possible to represent variable gain or asymmetrical
dynamics with linear models [15,16]. In this work, the focus will
be nonlinear models whose nonlinearities lie only on the system
inputs. Despite this limitation, a variety of nonlinear dynamics and
static nonlinearities can be represented by this kind of model. Par-
ticularly, the commonly known Volterra and Hammerstein models
used to represent many real nonlinear processes can be included
in this set of models.

1 Closed-loop stability guarantees that both |x(k)|< ∞,  and |g(u(k− d))| < ∞ for all
k,  so that |w(k)|< ∞ for all k. In other words, uncertainty effect is limited for non-
diverging responses in such a way that w(k) is bounded.

The representation of nonlinear processes by Volterra series has
various successful applications in process control [17–20], specially
because they allow the description of asymmetrical dynamics and
gain variations of the process [16]. This model can be viewed as a
generalization of the impulsive response for linear systems and its
equation is given below

y(k) =
∞∑

i1=1

h1i1 u(k − i1) +
∞∑

i1=1

∞∑
i2=1

h2i1i2 u(k − i1)u(k − i2) + · · ·

+
∞∑

i1=1

· · ·
∞∑
im

hmi1...im u(k − i1)· · ·u(k − im),

where the parameters h are the coefficients of the model and m is
the model order. Since this model only uses the inputs to explain
the output of the process, the number of coefficients is usually very
high. An alternative to this representation is to also use the infor-
mation of past outputs, resulting in the auto-regressive Volterra
(AR-Volterra) model [17], which is described by

A(q−1)y(k) = B(q−1)u(k − 1) +
∞∑

i1=1

∞∑
i2=1

h2i1i2 u(k − i1)u(k − i2) + · · ·

+
∞∑

i1=1

· · ·
∞∑

im=1

hmi1...im u(k − i)· · ·u(k − im), (3)

where q−1 is the delay operator, i.e., y(k)q−j = y(k − j), A(q−1) = 1 +
a1q−1 + · · · + ana q−na and B(q−1) = b0 + b1q−1 + · · · + bnb

q−nb are
polynomials on q−1 of order na and nb, respectively. In practice,
the infinite summations are also truncated after N terms, although
the choice of N is not a trivial matter. More information about iden-
tification and control of Volterra models can be found in [17].

The Hammerstein model is another interesting nonlinear model
with input nonlinearities. Such model structure may  account for
nonlinear effects encountered in most chemical processes, where
the nonlinear behaviour of many distillation columns, pH neutral-
ization processes, heat exchangers, as well as furnaces and reactors
can be effectively modelled by a nonlinear static element followed
by a linear dynamic element [21,22]. In essence, the Hammer-
stein models generalize the well-known gain-scheduling concept
for nonlinear control. The model is given by the following equation

A(q−1)y(k) = B(q−1)g(u(k − 1)) (4)

where polynomials A(q−1) and B(q−1) are the same defined for the
Volterra model and g(.) : R  → R  is a function that models the static
characteristics of the process gain. If g(.) is chosen as a polynomial
function, the Hammerstein model is actually a simplified version
of the AR-Volterra model.

3. Optimal predictors

In this section, the optimal predictor, which is commonly found
in MPC  algorithms, e.g., GPC, extended prediction self-adaptive
control (EPSAC), extended horizon adaptive control (EHAC), [23]
for the linear case, and practical nonlinear model predictive con-
trol (PNMPC) [24] and other MPC  variations for the nonlinear case
[25], will be thoroughly analyzed considering the system with input
nonlinearities described in this paper.

From Eq. (1), note that there is no effect of u(k) over x(k + 1),
x(k + 2), . . . , x(k + d) due to the dead-time. As consequence, in
absence of uncertainties, namely w = 0, x(k + d) depends only on
past inputs, so this can be obtained knowing the current state of the
plant x(k) and the input sequence u(k − d), u(k − d − 1), . . .,  u(k − 1).
However, this assumption does not hold in practice because it is
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