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a  b  s  t  r  a  c  t

The  development  and effective  use  of  all available  data  is extremely  important.  Previous  work  has  shown
that it is  possible  to identify  process  models  using  closed-loop  data  even  if the  reference  signal  was
not being  excited.  However,  such  results  require  that  the  system  have  a sufficiently  large  time  delay  or
alternatively  a  fast  sampling  time.  Therefore,  this  paper  seeks  to examine  and  provide  general  results
for  identifiability  of  a process  using  closed-loop  data  with  or without  changes  in  the  reference  signal.
Similarly  to the  previous  case,  it is  shown  that  the  complexity  of  the  required  reference  signal  depends
strongly  on  the  sampling  time  and  time  delay.  However,  since  many  fast processes  without  time  delay
can  be  modelled  as first-order  systems,  they  can indeed  be  identified  when  the  excitation  in  the  reference
signal  is a simple  step  function  or sequence  of such  functions.  Using  numerical  simulations  as  well  as  the
Tennessee  Eastman  process,  the effect  on  the continuous  time  parameters  is investigated  for  different
sampling  times  and  excitations  signals.  It  is  shown  that  as  expected  an external  reference  signal can
identify  previously  difficult-to-identifiable  cases.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Industrially, the development and assessment of models form
an important aspect of many different control strategies, includ-
ing fault detection and diagnosis, advanced process control, and
process optimisation. In many cases, it is desired to keep plant
perturbations, that is, changes, as small as possible. Although it
would be convenient if all models could be determined without
plant perturbations, it has been shown that in systems with small
time delays or very large sampling times, this may  not be feasible
[1]. It is well known that white noise or other sufficiently com-
plex perturbations can excite any system. However, such random
or large excitations can cause unnecessary process variability or
angst amongst the operators. For this reason, it would be useful to
determine relevant conditions that allow the determination of the
minimal signal properties required for the reference signal in order
to identify a model of the system.
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The foundations of determining the conditions for identifying
discrete models from closed-loop data started with the work of
Box, McGregor, Söderström, and Stoica, who sought to determine
the theoretical limits on the delay to guarantee consistency of
parameter estimates in the absence of a reference signal [2–4].
This research led to the development of general conditions for
closed-loop identification. In order to obtain a solution various
assumptions were made including dealing with an autoregres-
sive moving average model with exogenous input (ARMAX) with
at least a single sample delay [4] or various degrees of a priori
knowledge of pole-zero cancellations in the closed-loop transfer
function [5–7]. Removing these conditions would provide general
results that would then have broad applicability. The general case
for closed-loop identification with no perturbations in the refer-
ence signal has been recently completed [1]. However, there has
not been any work done to extend these results to the case where
there are perturbations in the reference signal. Preliminary results
were presented in [8].

Therefore, the objectives of this paper are (1) to extend the
previously developed closed-loop identification results to the case
where there are changes in the references signal for all types of
controls and discrete, linear models; (2) using the resulting con-
ditions to examine relationships between model orders, reference
signal excitation, and sampling time; and (3) finally, to examine the
results using both simulations and experimental data.
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Fig. 1. Generic closed-loop process.

2. Identifiability in closed-loop systems

2.1. Theoretical results

Consider a process that can be modelled as a closed-loop pre-
diction error (PE) system, similar to that shown in Fig. 1, i.e.,

Gc = X(z−1)
Y(z−1)

yt, Gp = z−nkB(z−1)
A(z−1)F(z−1)

, Gl =
C(z−1)

A(z−1)D(z−1)
(1)

where the X-polynomial is given as

X(z−1) = 1 +
nX∑
i=1

xiz
−i (2)

nX is the order of the polynomial; the Y-, A-, C-, D-, and
F-polynomials are defined similarly to the X-polynomial; the B-
polynomial is defined as

B(z−1) =
nB∑
i=1

ˇiz
−i (3)

nB is the order of the B-polynomial; and nk is the time delay in the
process, which excludes the one sample time delay introduced by
the sampler. For ease of presentation, the backshift operator, z−1,
will be dropped in the following sections, unless it is required for
clarity or emphasis.

For this system, the one-step ahead predictor, y(t|t–1, �), is

y(t|t − 1, �) = G−1
l
Gp︸  ︷︷  ︸

Wu

ut + (1 − G−1
l

)︸  ︷︷  ︸
Wy

yt (4)

Let a quasistationary vector signal,  t, be persistently exciting
if Ē( t Tt ) > 0 [9]. A quasistationary vector signal, rt, is said to be
sufficiently rich of order nr if the following regressor is persistently
exciting,

ϕ ≡

⎡⎢⎢⎢⎣
r (t  − 1)
r (t − 2)
...

r (t − n)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
z−1

z−2

...

z−n

⎤⎥⎥⎥⎥⎦ rt (5)

In order to distinguish between any two candidate models for
a given closed-loop data set, it is necessary that the following two
conditions hold [9]:{
E((�Wyrt)

2) = 0

�Wy ≡ Gc�Wu

(6)

where

Wu = G−1
l
Gp = z−nkDB

CF
, Wy = 1 − G−1

l
= C − AD

C
(7)

and � represents the difference between the two candidate models
1 and 2, i.e.,

�W = W1 − W2 (8)

Substituting the results from Eq. (7) into Eq. (6) gives⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

([(
A2D2

C2
− A1D1

C1

)
rt

]2
)

= 0

(
X

Y

)(
z−nkD1B1

C1F1
− z−nkD2B2

C2F2

)
=
(
A2D2

C2
− A1D1

C1

) (9)

In order to solve for the closed-loop conditions, consider that

(1) There are possible cancellations between D1 and F1, so that D1 =
HD̄1 and F1 = HF̄1, where H is a polynomial with order nH and
D̄1 and F̄1 are coprime.

(2) There are possible cancellations between C1F̄1Y and (F̄1A1HY +
z−nkB1X), so that

C1F̄1Y = T ¯C1F̄1Y = TC̄1
¯̄F1Ȳ

(F̄1A1HY + z−nkB1X) = T ¯(F̄1A1HY + z−nkB1X)
(10)

where T is a polynomial with order nT = min(nC + nF + nY,
nF + nA + nY, nB + nX) and TC̄1

¯̄F1Ȳ and ¯(F̄1A1HY + z−nkB1X)  are
coprime. This takes into consideration any potential pole-zero
cancellations in the closed-loop system transfer function. It
should be noted that since the common terms in the denomi-
nator may  only appear after the terms in the denominator have
been combined, it can be shown that [1]

F̄1A1HY + z−nkB1X = M1N + P1O = TM̄1N̄ + TP̄1Ō (11)

where M1, N, P1, and O are polynomials constructed so that
the common terms between numerator and denominator of the
closed-loop transfer function given by the T-polynomial, appear
in both terms of the sum, the orders of the M1 and P1 are, respec-
tively, equal to that of the sum of the A1- and F1-polynomials
and the B1-polynomials, and, finally, N̄ and Ō are coprime. The
number of overbars placed over the polynomials represents the
number of potential reductions in the order of the polynomial
due to non-coprimedness of the selected polynomials.

Theorem 1 (Routine-operating case). Assume that the reference
signal remains constant with a value of zero and the assumptions
described above hold, then the system can be identified if the follow-
ing relationship holds among the orders of the polynomials and the
discrete time delay:

max

(
nX + nk − nF − nA,

nY − nB

)
≥ nD + min

⎛⎜⎝ nC + nF + nY ,

nA + nF + nY ,

nB + nX

⎞⎟⎠ (12)

Proof. Since the proof follows the same approach as used in [10]
and is fully proven in [11], it is omitted here.�

Theorem 2 (Excited reference signal case). Assume that the
assumptions described above hold, then the minimal excitation
required for the reference signal is

nr ≥ nD + min(nC + nF + nY , nA + nF + nY , nB + nX )

+ min(nF + nA − nX − nk, nB − nY ) (13)

with the caveat being that the points of support for rt do not coin-
cide with any possible zeroes of X on the unit circle. The richness
order of the reference signal is denoted by nr and is defined by Eq.
(5).

Proof. The proof of this theorem is given in Appendix I.�
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