
Journal of Process Control 24 (2014) 1710–1719

Contents lists available at ScienceDirect

Journal  of  Process  Control

j our na l ho me  pa g e: www.elsev ier .com/ locate / jprocont

Inverted  decoupling  internal  model  control  for  square  stable
multivariable  time  delay  systems

Juan  Garridoa,∗, Francisco  Vázqueza,  Fernando  Morillab

a Department of Computer Science and Numerical Analysis, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
b Department of Computer Science and Automatic Control, UNED, Juan del Rosal 16, 28040 Madrid, Spain

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 2 February 2014
Received in revised form
10 September 2014
Accepted 10 September 2014
Available online 24 September 2014

Keywords:
Internal model control
Multivariable time delay systems
Decoupling control

a  b  s  t  r  a  c  t

This paper  presents  a new  tuning  methodology  of  the  main  controller  of  an  internal  model  control  struc-
ture for n  ×  n stable  multivariable  processes  with  multiple  time  delays  based  on the centralized  inverted
decoupling  structure.  Independently  of  the system  size,  very  simple  general  expressions  for  the  controller
elements  are  obtained.  The  realizability  conditions  are  provided  and  the specification  of the  closed-loop
requirements  is explained.  A diagonal  filter  is  added  to the  proposed  control  structure  in order  to  improve
the  disturbance  rejection  without  modifying  the  nominal  set-point  response.  The  effectiveness  of  the
method  is  illustrated  through  different  simulation  examples  in comparison  with  other  works.
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1. Introduction

Time delays arise in many industrial processes as a conse-
quence of different phenomena such as transport times of mass,
information or energy; accumulation of time lags in processes
interconnected in series; or processing time [1]. Time delays affect
the performance of traditional control systems because they can
lead to very poor system response as they prevent high controller
gain from be used in order to avoid instability. The Smith Predictor
(SP) was the first compensator specially designed for single-input
single output (SISO) systems with time delay [2]. It allows the elim-
ination of the time delay in the characteristic equation. In the last
years, different modifications of the SP have been developed to
overcome some drawbacks of its initial proposal and to improve
its performance [3,4].

In multiple-inputs multiple-outputs (MIMO) systems there may
be important couplings between inputs and outputs signals which
may complicate the feedback controller design. In presence of time
delays this design becomes even more difficult because each out-
put is affected by each input with different time delays [5]. As
a result, a transfer function matrix representation of the MIMO
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process is preferred in these cases [6]. Different approaches have
been developed in order to design controller for multivariable
systems with multiple time delays: some authors have extended
the SP to the multivariable case [7–9]. In line with the previ-
ous ones, other works propose to solve the problem by means
of an internal model control (IMC) applied to MIMO  processes
[10,11]. There is a close relationship between PS and IMC  [12] since
the SP can expressed in an equivalent IMC  structure as shown
in Fig. 1 where Gm is the multi-delay model of the plant. Oth-
ers authors develop directly multivariable methodologies based
on the conventional unity feedback structure: decoupling control
[13–16], multivariable PID controllers [17,18], H∞ controllers [19],
or decentralized controllers [20,21]. Some of these methodologies
combine PS or IMC  with some of the last methods [6,22]. Others
use two degree of freedom control structures in order to achieve a
good performance for reference tracking and disturbance rejection
separately [23,24].

In order to apply IMC  to multivariable systems, two approaches
can be usually found. The first one consists in designing a decoupler
D(s) to the original process in order to obtain a diagonal or diago-
nal dominant apparent process, and then, applying the IMC  to this
apparent process G(s)·D(s) (Fig. 2) [25,26]. The IMC  design can be
performed as that of SISO case. The second one and more common
applies simultaneously decoupling control and IMC  [6,27] using the
scheme of Fig. 1.
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Fig. 1. IMC  scheme.

From the IMC  scheme in Fig. 1, the matrix expressions of the
closed-loop transfer matrix T(s) from the references r to the outputs
y, and the transfer matrix H(s) from the load disturbances d to the
outputs y can be obtained as follows:

T(s) = G(s) · Q (s) · [I + (G(s) − Gm(s)) · Q (s)]−1 (1)

H(s) = G(s) − G(s) · [I + Q (s)(G(s) − Gm(s))]−1 · Q (s) · G(s) (2)

where G(s), Gm(s) and Q(s) are the transfer matrix of the plant, the
nominal model of the plant and the main controller of the IMC
structure, respectively. When the model of the process is perfect,
that is, Gm(s) = G(s), the previous closed-loop transfer matrixes are
simplified to (3) and (4).

T(s) = G(s) · Q (s) (3)

H(s) = G(s) − G(s) · Q (s) · G(s) = (I − T(s)) · G(s) (4)

Therefore, the main controller Q(s) can be calculated from (3)
after defining the closed-loop transfer matrix T(s) properly for real-
izability and stability. Most of multivariable IMC  methodologies use
a transfer matrix Q(s) in which the process inputs u are derived
by a time-weighted combination of the error signals e. If decou-
pling is required in T(s), the main problem of such methods is
the increase of the design complication when the size of the sys-
tem is large, because the calculations become more complex and
important approximations are usually required. For instance, an
analytical decoupling IMC  method is developed in [11] on the basis
of the H2 optimal performance objective. It uses the IMC scheme of
Fig. 1 and complex controller elements are obtained for the ideal
optimal control matrix even for 2 × 2 processes.

This work proposes a new tuning methodology of the main con-
troller of an IMC  structure for directly decoupling and stabilizing
square stable multivariable processes with multiple time delays.
It is based on the structure of centralized inverted decoupling
[28] that allows obtaining very simple expressions for controller
elements independently of the system size. However, as disadvan-
tage, it cannot be applied to processes with multivariable zeros
in the right half plane (RHP) since it results unstable. The paper
is structured as follows. In Section 2, the proposed method is
developed for n × n processes. Several aspects as realizability are
discussed. The equivalency between multivariable IMC  and cen-
tralized inverted decoupling control schemes is shown. In order
to improve disturbance rejection a diagonal filter in the feedback
loop is proposed. Section 3 illustrates the methodology with sev-
eral simulation examples. Finally, conclusions are summarized in
Section 4.

Fig. 2. IMC  with decoupler scheme.

2. Inverted decoupling IMC

2.1. General expressions for n × n processes

Assuming a stable square process G(s) with n inputs and n
outputs, the proposed methodology uses the centralized inverted
decoupling control to design the control matrix Q(s) obtaining a
decoupled response in T(s). As shown in Fig. 3, Q(s) is split into two
blocks: a matrix Qd(s) in the direct path (between the error sig-
nals e and the control signals u) and a matrix Qo(s) in a feedback
loop (in the opposite direction). According to the inverted decou-
pling structure, Qd(s) must have only n elements different from
zero which connect the error signals e with the control signals u. In
order to decouple the system, Qo(s) feeds back the control signals u
toward the controller inputs. Qo(s) must have only n zero elements,
which correspond with the transpose non-zero elements of Qd(s).
For example, in a 4 × 4 process, if element Qd(1,4) is selected as a
direct connection between u1 and e4, there will not be feedback
from u1 to e4 and consequently, Qo(4,1) must be zero.

From the representation in Fig. 3 and from the general IMC
Eq. (3), the expression of the elements of Qd(s) and Qo(s) can be
calculated by means of (5).

Qd−1(s) − Qo(s) = T−1(s) · G(s) (5)

This main expression is quite similar to that obtained for the
centralized inverted decoupling control in [28]. However, in this
method, the desired open-loop transfer matrix L(s) used in [28] is
replaced by the desired closed-loop transfer matrix T(s) because
of the IMC  structure. Afterward, the design equations are practi-
cally the same of [28]. Nevertheless, the tuning procedure using
T(s) instead of L(s) allows specifying the desired nominal perfor-
mance in a more direct and easier way than that used in [28]. In the
last one, using the classical control feedback scheme, specifications
need to be translated to the open-loop transfer functions from the
closed-loop requirements.

Assuming that the desired closed-loop response is a decoupled
response from the references to the outputs, the matrix T(s) must
be diagonal. Then, the main advantage of (5) over expressions of
conventional multivariable IMC  methods is its simplicity, regard-
less of the size of the process, because the resulting subtraction of
Qd−1(s) and Qo(s) is a transfer matrix with only one element to be
calculated for each position.

Note that Qd(s) has to be non-singular since it is inverted, and
therefore, when its non-zero elements are chosen, only one ele-
ment in each row and column can be selected. As a result, for an
n × n system there are n! possible configurations of Qd(s). To name
them, the authors propose the same notation in [29], in which the
indicated number corresponds to the column with the chosen ele-
ment. For instance, in a 2 × 2 system there are two  configurations:
1–2 when elements Qd(1,1) and Qd(2,2) are selected to be non-zero;
2–1 when elements Qd(1,2) and Qd(2,1) are chosen. The expression
of the controller elements for each configuration is different, which
is interesting because some choices can result in non-realizable ele-
ments. Therefore, the configuration can be selected depending on
the realizability, which will be discussed later.

Fig. 3. Inverted decoupling IMC scheme.
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