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a  b  s  t  r  a  c  t

This  paper  focuses  on the  application  of the  Linear  Quadratic  Regulator  (LQR)  in industrial  process  systems
where  one  has  zone  control  of  the  outputs  and  input  economic  targets  as  well  as  constraints  on  the  inputs
and  input  moves.  In  the  approach  proposed  here,  the  LQR  is  combined  with  the Model  Predictive  Control
(MPC)  in  a framework  where  the  system  outputs  are  controlled  through  the LQR  state  feedback  control
law  and the  output  set points  are  manipulated  by the  MPC  to enforce  the  input  constraints  and  input
targets.  The  performance  of the  proposed  controller  is  tested  through  the  simulation  of the  control  of an
industrial  deisobutanizer  column.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

In the process industry, the advanced control problem of constrained multivariable systems is usually tackled with model predictive
control [1]. Based on a model of the system to be controlled, MPC  calculates at each time step an open-loop finite sequence of manip-
ulated inputs that optimizes the predicted behavior of the system, usually subject to constraints on the inputs and outputs. When the
closed-loop system is considered, the open-loop strategy of MPC  shows to be suboptimal because it is based on finite input and output pre-
diction horizons. Also, the stability of the closed-loop system depends on the tuning parameters even when the process model is perfectly
known.

In the unconstrained case, MPC  with infinite input and output horizons becomes equivalent to the Linear Quadratic Regulator [2] where
a state feedback control law can be expressed as u(k + i) = K(k)x(k + i), i ≥ 0. Besides being optimal in closed-loop, another advantage of LQR
is that stability can be assured in the state feedback case and the separation principle allows the inclusion of a state estimator such that
stability is extended to the output feedback case. In the set point tracking case, the constrained LQR can be implemented through iterative
procedures where MPC  and LQR are combined to compute the input sequence along the infinite horizon [3,4]. Kothare et al. [5] proposed
a strategy that is an extension of the LQR approach to the constrained case. Conservative LMI  constraints on the inputs and outputs are
added to the optimization problem that defines the controller so that the solution to the constrained case becomes a state feedback control
law as in the unconstrained case. For the practical application, the approach suffers from some limitations as the conservative way the
constraints are implemented reduces the attraction domain of the controller, the zone control strategy [6] is not addressed and the large
number of decision variables impacts the computational burden of the control problem. In the zone control strategy, the output does not
have a fixed set-point and it has only to be controlled inside a zone or range.

For the finite horizon MPC, stability can be achieved through the inclusion of a state constraint at a finite time step [7–11]. The main
drawback of this approach is that when, because of the input constraints, the state constraint cannot be satisfied, the problem that defines
the MPC  becomes infeasible, which is not acceptable in practice. Stability of the MPC  can also be achieved through the extension of the
output prediction horizon to infinity [12,13]. A limitation of this method to the case of unstable systems is the need to include additional
constraints to zero the effect of the unstable modes beyond the control horizon. These additional constraints may  also conflict with the
input constraints and turn the MPC  infeasible.
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Fig. 1. Schematic representation of the combined LQR–MPC approach.

To avoid the use of a state observer, one can use a state space model as the realigned state model in which the state is composed of
the past measured outputs and inputs of the system [6]. Recent papers dealing with model predictive control based on such non-minimal
model includes Wang and Young [14], González et al. [15] and Zhang et al. [16]. In the simulation example considered here, the model
representation proposed by González et al. [15] is adopted.

In the process industry, MPC  is usually implemented in a multi-layer structure. The usual hierarchical control architectures based on
MPC are summarized by Scattolini [17]. More recently, simplified versions of the hierarchical structure, which integrate the multi-layer
structure into a single layer have been proposed [18–20], but the simplified approach has not been extensively implemented in industry
yet.

In this paper, as illustrated in Fig. 1, focusing on the implementation on real systems of the process industry, a new approach where the
state feedback LQR control strategy is combined with the MPC  framework in order to address the zone control strategy of process systems
where an upper layer in the control structure defines economic targets for some of the inputs is proposed. The objective is then to drive
the system to these targets while maintaining the output inside predefined boundaries. In the approach proposed in this work, the process
outputs are controlled through the LQR control law, but the output set-points are not fixed and are allowed to vary inside the output control
zones. Then, in the proposed structure, the output set points become the actual manipulated variables of the MPC. This strategy allows the
constraints on the process inputs to be addressed at the MPC  level through the computation of suitable output set points. Finally, since the
closed-loop resulting from the application of the LQR feedback control law to the process system is stable even if the open loop process
system is unstable, the proof of convergence and stability of the LQR–MPC approach is simplified.

This paper is organized as follows. In Section 2, the application of the state feedback control law to the process model is discussed and
the resulting state space representation of the closed loop with the LQR is developed. In Section 3, the MPC  that manipulates the output
set points and considers zone control of the process outputs and optimizing targets for the process inputs is formulated. The stability and
convergence of the proposed approach are discussed. In Section 4, the performance of the proposed control approach is illustrated through
the simulation of the control of an industrial deisobutanizer column. Finally, in Section 5 the paper is concluded.

2. The process model for the LQR–MPC

Assume that one has a controllable system that can be represented by a state space model in the incremental form as by González et al.
[15]:

x(k + 1) = Ax(k) + B�u(k)

y(k) = Cx(k)
(1)

where, x ∈ � nx , u ∈ � nu, �u(k) = u(k) − u(k − 1), y ∈ � ny and A, B and C are matrices of appropriate dimensions. The system represented in
Eq. (1) has poles at +1 because of the input incremental form of the model and it is assumed that the system may  have other stable or
unstable poles.

Now, suppose that one stabilizes the system represented in Eq. (1) through the following state feedback control law:

�u(k) = F
[
x(k) − xsp(k)

]
(2)

where, xsp(k) is the state set-point at time step k and assume that xsp(k) = Ĩysp(k) where Ĩ is known and ysp(k) is the output set-point at
time step k.

F is the optimal gain matrix such that in closed loop, the state feedback control law defined in Eq. (2) minimizes the cost function:

J∞,k =
∞∑

j=0

[
y(k + j|k) − ysp

]T
Qy

[
y(k + j|k) − ysp

]
+

∞∑
j=0

�u(k + j|k)T R�u�u(k + j|k) (3)

where, Qy and R�u are positive definite weight matrices, which are assumed to be known before the computation of F.
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