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a b s t r a c t

We have studied the impact of the higher-order effects: intrapulse Raman scattering (IRS), third-order of
dispersion (TOD) and self-steepening (SS) on pulsating solutions, moving fronts and stationary solutions
of the complex cubic–quintic Ginzburg–Landau equation (CCQGLE) found in Tsoy and Akhmediev (2005)
as well as on the solutions presented in Uzunov et al. (2014). The applied basic equation generalizes the
CCQGLE with the IRS, TOD and SS effects. A finite-dimensional dynamical system has been derived using
the method of moments. Applying the derived dynamical system alongside with the numerical solution
of the generalized CCQGLE performed by means of the fourth-order Runge–Kutta interaction picture
method we have found that the influence of IRS and SS is stronger than the impact of TOD for the
solutions of Tsoy and Akhmediev (2005). Perturbed pulsating solutions, moving fronts and stationary
solutions in the presence of IRS, SS and TOD have been numerically observed. They exist up to some
critical values of the parameters of perturbations. For the values of parameters larger than the critical
ones the pulsating solutions are transformed into stable stationary solutions or unstable solutions.
New localized fluctuating and stationary solutions have been obtained for fairly large values of parame-
ters of IRS and TOD, respectively. The transformation of the stable stationary solution of Uzunov et al.
(2014) under the influence of SS into pulsating solution has been numerically observed.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that the complex cubic–quintic Ginzburg–
Landau equation (CCQGLE) in optics [1–4] can model soliton trans-
mission lines [5,6] as well as passively mode-locked laser systems
[7–10].

The exact solutions of the complex cubic Ginzburg–Landau
equation (CCGLE) has been reported in [11–14]. An exact solution
of the CCQGLE has been proposed in [6]. The numerical solutions of
CCQGLE could be divided into two groups – localized fixed-shape
solutions and localized pulsating solutions. Localized fixed-shape
solutions are the stable stationary pulses, the composite pulses
and the moving pulses [1]. Localized pulsating solutions can be
plain pulsating, creeping, snaking and erupting solutions [15,16].
Chaotic pulsating and period doubling solutions were observed in
[17–18].

For the analysis of CCQGLE there has further been proposed a
reduction to a finite dimensional system by means of the method
of moments [19,20]. The bifurcation analysis of optical solitons in
CCQGLE has been reported in [19,20]. It has been shown that the
pulsating solutions correspond to the limit cycles of the finite
dimensional dynamical system. It has been shown that the peri-
odic, quasi-periodic and chaotic attractors of Euler–Lagrange equa-
tions obtained through the Lagrangian method can be related to
numerically observed solutions of CCQGLE [21,22].

It has been shown that narrowband filtering and nonlinear gain
can be used to control the self-frequency shift due to the intrapulse
Raman scattering (IRS) of ultra-short optical solitons in fiber-optic
systems [23]. The role of the nonlinear gain is to give an effective
gain to the soliton and suppression of the noise or, in other words,
to reduce the background instability [23]. Recently, while analyz-
ing the same physical situation, we numerically observed that
the small change of the parameter describing IRS leads to qualita-
tively different behavior of the evolution of pulse amplitudes [24].
Using the first two moments of the nonlinear Schrödinger equation
we have proved that the strong dependence of the pulse dynamics
on the IRS is related to the existence of the Poincare–Andronov–
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Hopf bifurcation (PAHB) and the appearance of the unstable limit
cycle [24].

The influence of the higher-order effects – the third-order of dis-
persion (TOD), IRS and the self-steepening (SS) on the fiber laser
operation or on the stable stationary solutions of the CCGLE has been
studied in [25]. The existence of the exact chirped solitary solution of
this generalized CCGLE, which includes the higher order effects, has
been first reported in [26]. Recently it has been shown numerically
that under the influence of the higher-order effects, the localized
pulsating solutions of CCQGLE can be transformed into fixed-shape
solutions for a certain range of parameter values [27,28].

An approach has been presented for the identification of peri-
odic attractors of the generalized CCQGLE with IRS [29,30]. Using
the ansatz of the traveling wave and fixing some relations between
the material parameters, the strongly nonlinear Lienard–Van der
Pol equation for the amplitude of the nonlinear wave has been
derived [29,30]. Next, the Melnikov method has been applied to
this equation and the existence of a limit cycle has been shown.
The stability of this limit cycle has been proved in [29,30]. A per-
turbation theory for the description of the influence of the nonlin-
ear refraction index, IRS and TOD on the stable stationary solutions
below the PAHB identified in [24] has been proposed in [31]. This
theory completes the theory used in [23,24] including in its analy-
sis the position and phase of the soliton pulse. It turned out that
the equations for the position and phase are independent from
those of the amplitude and frequency. At the same time the
higher-order effects influence only the equations of position and
phase. So the model was not able to describe the pulsating solu-
tions in the presence of higher-order effects. However, it has been
predicted by this model and the numerically verified significant
reduction of the time shift of stable stationary solutions due to
the IRS in the presence of SS and TOD[31].

We study here the influence of the higher-order effects on mov-
ing fronts, pulsating and stationary solutions described in [6,19,20]
as well as on the stationary and pulsating solutions found in [24].
One of our aims is to propose a general approach for the study of
the influence of the IRS, SS and TOD on all of the solutions of
CCQGLE avoiding the restrictions of previous approaches
[29,30,24,31]. As it is well known the method of moments [32]
could be useful for the analysis of stationary solutions, pulsating
solutions and moving fronts [19,20]. In addition to the usual soli-
ton perturbation theory we can also consider the evolution of the
width that is not related to the amplitude and chirp. The last situ-
ation is typical for the solutions of CCQGLE [6]. We apply here the
method of moments [32] in order to derive five dimensional
dynamical systems of ODE for the evolution of the amplitude, fre-
quency, position, width and chirp of all solutions of CCQGLE. The
derived here dynamical system (see Eq. (3) below) generalizes
the dynamical systems used earlier in [32,19,20]. For the case of
small values of parameters, predictions of system (3) are verified
by the numerical solution of the generalized CCQGLE performed
by means of the fourth-order Runge–Kutta interaction picture
method. In the case of large values of the parameters pure numer-
ical investigation has been performed.

The paper is organized as follows: First, the physical meaning of
the generalized CCQGLE is presented in Section 2. Section 3 con-
tains the details of numerical simulation of Eq. (1). The derived
dynamical system of ODE is introduced in Section 4. Section 5 gives
the results of the analysis of the influence of higher-order effects
on the solutions of CCQGLE [6,19,20]. In Section 6 we present the
results of the analysis of the impact of higher-order effects on
the stationary solution and pulsating solution of [24]. In
Section 7 we study the performance of the derived System (3).
Finally, we make our conclusions in Section 8. The appendix con-
tains a short description of the application of the method of
moments [32].

2. Basic equation

The propagation of ultra-short pulses in the presence of spectral
filtering, linear and nonlinear gain/loss, as well as higher order
effects: IRS, TOD and SS is described by the following generalized
CCQGLE [4,27,28]:
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where U is the normalized envelope of the electric field, X is the
normalized propagation distance, t is the retarded time, d is the lin-
ear gain or loss coefficient, b describes spectral filtering (gain dis-
persion), b3 accounts for the TOD, e is related to the nonlinear
gain-absorption process, l, if negative, accounts for the saturation
of the nonlinear gain, m, if negative, corresponds to the saturation
of the nonlinear refraction index, s describes the self-steepening
effect. The last term in Eq. (1) describes the IRS and c is related to
the first moment of the nonlinear response function (the slope of
the Raman gain spectrum) [3,4].

3. Numerical solution of the basic equation

The numerical solution of Eq. (1) in this paper is performed by
means of the ‘‘fourth-order Runge–Kutta method in the interac-
tion picture method’’ (RK4IP method) RK4IP can generally be
interpreted as an exponential Runge–Kutta method applied to
the solution of parabolic PDE [33–37]. The method has a 4th-
order convergence, which makes it a good alternative to all
known variants of the split step Fourier methods (SSFM). In some
cases, the method shows a significantly better accuracy than the
SSFM [34,35,37]. A comparison of the performances of RK4IP and
SSFM has been made for a number of cases from [36,38] and a
perfect match has been obtained. The numerical parameters
applied for the presented here numerical results are: sampling
rate: 8192; time step 0.04; propagation step: 0.001. The typical
distance for the calculation of the propagation of pulsating and
stationary solutions in this work is for x � 2000. In some cases
larger distances of calculation are used. These cases will be men-
tioned later in the text. For the calculation of the evolution of
amplitudes, frequencies and time shifts of solutions there has

been used the numerical data product Origin 8.5.
As the aim of this work is the study of localized solutions, we

use the analysis of [20 and references therein] to choose the
proper values of the physical parameters. Due to the relation
between the existence of localized solutions and the existence
of continuous waves we look for a plane wave in the form of
U ¼ u expðiKx� ixtÞ, where u, K and x are real parameters.
Substituting this expression in Eq. (1) we found the following
equations for u and K: u½eu2 þ lu4 þðd� bx2Þ� ¼ 0 and
K ¼ 1

2 ð2su2x�x2 þ 2b3x3 þ 2u2 þ 2mu4Þ. The higher- order terms
included in this work influence only the second equation, so the
analysis for the amplitudes of the solutions of the first equation
performed in [20] remains valid. We assume in what follows that
the following conditions will be satisfied: d;l < 0, b; e > 0 and
e > 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðd� bx2Þ

p
.

The initial condition with which Eq. (1) is numerically solved is:
Uðx; tÞ ¼ U0sechðU0tÞ expð�ix0tÞ where U0 and x0 are initial pulse
amplitude and frequency, respectively.

4. Dynamical system of ODE

To derive the dynamical system we use the trial function in the
form [32,19,20]:
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