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a b s t r a c t

We investigate modulational instability (MI) in a planar dual-core waveguide (DWG), with a Kerr and
non-Kerr polarizations based on coupled nonlinear Schrödinger equations in the presence of linear cou-
pling term, coupling coefficient dispersion (CCD) and other higher order effects such as third order dis-
persion (TOD), fourth order dispersion (FOD), and self-steepening (ss). By employing a standard linear
stability analysis, we obtain analytically, an explicit expression for the MI growth rate as a function of
spatial and temporal frequencies of the perturbation and the material response time. Pertinently, we
explicate three different types of MI—spatial, temporal, and spatio-temporal MI for symmetric/antisym-
metric continuous wave (cw), and spatial MI for asymmetric cw, and emphasize that the earlier studies
on MI in DWG do not account for this physics. Essentially, we discuss two cases: (i) the case for which the
two waveguides are linearly coupled and the CCD term plays no role and (ii) the case for which the linear
coupling term is zero and the CCD term is nonzero. In the former case, we find that the MI growth rate in
the three different types of MI, seriously depends on the coupling term, quintic nonlinearity, FOD, and ss.
In the later case, the presence of quintic nonlinearity, CCD, FOD, and ss seriously enhances the formation
of MI sidebands, both in normal as well as anomalous dispersion regimes. For asymmetric cw, spatial MI
is dependent on linear coupling term and quintic nonlinearity.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In nonlinear fiber optics, much attention has been devoted to
the investigations of MI in the framework of nonlinear
Schrödinger equation. MI is a characteristic feature of a wide class
of nonlinear dispersive systems. It is a fundamental nonlinear phe-
nomenon [1–3] in which a weak perturbation imposed on a contin-
uous wave (cw) state grows exponentially, which results in the
break up of cw into a train of ultra-short pulses. MI has been stud-
ied since 1960s. This phenomenon arises due to interplay between
nonlinearity and dispersion. MI plays an important role in many
nonlinear phenomena such as cross phase modulation [2,4],
four-wave mixing [5], supercontinuum generation [6], and Bragg
grating [3,7]. MI can be classified into three main categories—spa-
tial [8,9], temporal [10,11], and spatiotemporal [12,13]. The spatial
MI occurs due to the interaction between the nonlinearity and
diffraction which results into the break-up of homogeneous beam

into numerous small filaments. The temporal MI occurs due to
interplay between the group velocity dispersion (GVD) and nonlin-
earity and manifests itself as break-up of cw into a train of ultra-
short pulses. In temporal MI the anomalous GVD plays the same
role as is played by diffraction term in spatial MI. However in spa-
tiotemporal MI all the three terms—nonlinearity, dispersion, and
diffraction are nonzero and it occurs due to the simultaneous pres-
ence of spatial and temporal MI in nonlinear medium. Recently, the
phenomenon of MI has been extensively explored in different areas
such as negative refractive index materials [14,15], silicon pho-
tonic nanowires [16], and in single core fiber [17,18], however very
less attention has been paid to the study of MI in twin-core fibers
[19,20].

The planar dual-core waveguide is a waveguide that consists of
two linearly coupled identical parallel cores. In a DWG optical
power can be transferred between two cores periodically [21].
This phenomenon of periodic optical power transfer between the
two cores along a DWG is widely used in many practical planar
waveguide devices. Power transfer through DWG has two general
continuous wave (cw) state:
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(1) The first state is symmetric/antisymmetric state in which
the power through two cores of DWG are always equal. If the
power in two cores are in phase then state is said to be symmet-
ric state and if the power in two cores are out of phase then
state is said to be asymmetric.
(2) The second state is antisymmetric state, where optical
power in two cores are unequal.

The evolution of slowly varying envelope in DWG is governed
by a set of coupled nonlinear Schrödinger equations (NLSE). The
coupling coefficient for linear coupling between the two equations
dictates the strength of the power transfer. The magnitude of cou-
pling constant depends upon the design and operation condition of
the optical fiber. The coupling coefficient dispersion (CCD) plays an
important role in pulse distortion and it can also result into the
pulse breakup and thus seriously affect nonlinear pulse switching
[22,23].

Recently Li et al. [24] have investigated the effect of CCD on MI
for twin-core fiber in the presence of GVD and cubic nonlinearity
for symmetric/antisymmetric and asymmetric cw. In particular,
the system of coupled NLSE does not include the diffraction, the
FOD, and the quintic nonlinear term, and thus the characteristic
of two other kinds of MI—spatial and spatio-temporal MI and
the physics behind them are not disclosed. Also, recently,
Kartashov et al. [25] studied stabilization of spatio-temporal
solitons in Kerr media by dispersive coupling. Motivated by
these work and others, we have investigated MI for DWG in the
presence of CCD and other higher order effects such as quintic
nonlinearity, self steepening, third order dispersion, and fourth
order dispersion.

In particular, we have studied MI for both symmetric/antisym-
metric and asymmetric cw. Three different types of MI —spatial,
temporal, and spatiotemporal MI have been studied for symmet-
ric/antisymmetric cw. We have investigated the variation of spatial
MI with quintic nonlinearity for self-focusing and self-defocusing
medium. For the temporal case we have studied the impact of var-
ious parameters such as coupling term, FOD, ss, and quintic nonlin-
earity on the MI gain in focusing as well as defocusing medium. For
example, the spatial MI gain is directly proportional to the strength
of quintic nonlinearity and coupling term, while the temporal MI
gain crucially depends on strength of quintic nonlinearity, FOD
and ss terms. Thirdly, the spatio-temporal MI can occur for focus-
ing medium in the normal dispersion regime with an enhanced
formation of sidebands, while for the defocusing nonlinearity and
anomalous dispersion, there is a suppression of generation of MI
sidebands. To sum up, we affirm that all these additional terms
provide extra freedom to control the amplitude of the MI gain
profile.

2. Model equations

In DWG, each core supports only a single mode. The evolution of
the electric-field envelopes along the waveguide is described by a
pair of generalized coupled nonlinear Schrödinger equations given
by
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where n and s are the propagation distance and time respectively.
W1 and W2 are the slowly varying pulse envelopes in two cores,
b2, measures the GVD at the carrier frequency (b2 < 0 for anoma-
lous dispersion and b2 > 0 for normal dispersion). Cnl and Dnl are
the coefficients of cubic nonlinearity in two cores of the DWG.
CnlCs and DnlDs self-steepening coefficients in two cores. d3; d4 are
the coefficient of TOD and FOD respectively. Cq;Dq are the coeffi-
cients of quintic nonlinearity in two cores. C and P are linear cou-
pling term coefficient and coupling coefficient dispersion (CCD)
term respectively. Introducing the normalized units,
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where T0 is the pulse width, LD ¼ T2
0=jb2j is the dispersion length,

and W01 and W02 are the initial amplitudes of the slowly varying
envelope in two cores of the DWG. N1 and N2 may be termed the
order of solitons and are defined as N2
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and we assume that N1 ¼ N2 ¼ N. We define nonlinear polarization
length as LCnl

¼ 1=CnlW
2
01 and LMnl

¼ 1=DnlW
2
02. Let

g1 ¼ W2
01Cqnl=ðCnlN

2Þ and g2 ¼ W2
02Dqnl=ðDnlN

2Þ and characteristic

length L? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jLD=k0j

p
is also introduced.

b3 ¼ d3=T0jb2j; b4 ¼ d4=T2
0jb2j and C1 ¼ PW02=W01jb2j. Thus Eq. (1)

can be transformed into the following form
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Here S1 ¼ jCsj=T0; S2 ¼ jDsj=T0 and g ¼ C T2
0=jb2j.

3. Linear stability analysis

The continuous steady state solution of this equation is
u ¼ a0 expðiX0aZÞ and v ¼ b0 expðiX0bZÞ, where a0 and b0 are the
normalized amplitude also X0a and X0b are corresponding nonlin-

ear phase shift, which satisfies X0a ¼ fa2
0 þ b2

0 þ g1a4
0 and

X0b ¼ a2
0 þ fb2

0 þ g2b4
0. For symmetric/antisymmetric cw a0 ¼ mb0,

where m ¼ �1 (m ¼ þ1 for symmetric and m ¼ �1 for antisym-
metric cw) and for asymmetric cw a0 – b0. If continuous wave
solution is slightly perturbed from the steady state,

uðX; Z; TÞ ¼ a0 þ aðX; Z; TÞ½ � expðiX0aZÞ ð3Þ

vðX; Z; TÞ ¼ b0 þ bðX; Z; TÞ½ � expðiX0bZÞ ð4Þ

where aðX; Z; TÞ and bðX; Z; TÞ are the perturbations such that
a; b� 1. Substituting Eq. (3) and Eq. (4) into Eq. (2) and linearizing
in a and b, we obtain the following equations
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Now substituting a¼a1 expðiðkZ�XTþqxXÞÞþa2 expðiðkZ�XTþqxXÞÞ
and similarly for b. Where k;X;q2¼q2

x are the longitudinal wave
number, frequency and transverse wave number of the
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