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a b s t r a c t

We consider cyclic polling models with gated or globally gated service, and study the tran-
sient behavior of all cycle lengths. Our aim is to analyze the dependency structure between
the different cycles, as this is an intrinsic property making polling models challenging to
analyze. Moreover, the cycle structure is related to the output of a polling model and the
current analysis may be useful to study networks of polling models. In addition, transient
performance is of great interest in systems where disruptions or breakdowns may occur,
leading to excessive cycle lengths. The time to recover from such events is a primary perfor-
mancemeasure. For the analysis we assume that the distribution of the first cycle (globally
gated) or N residence times (gated), where N is the number of queues, is known and that
the arrivals are Poisson. The joint Laplace–Stieltjes transform (LST) of all x subsequent cy-
cles (globally gated) or all x > N subsequent residence times (gated) is expressed in terms
of the LST of the first cycle. From this joint LST, we derive first and second moments and
correlation coefficients between different cycles. Finally, a heavy-tailed first cycle length
or the heavy-traffic regime provides additional insights into the time-dependent behavior.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Polling systems are multi-queue systems in which a single server visits the queues in some order to serve the customers
waiting at the queues, typically incurring some amount of switch-over time to proceed from one queue to the next.
Polling models find a wide variety of applications in which processing power (e.g., CPU, bandwidth, manpower) is shared
among different types of users. Typical application areas of pollingmodels are computer–communication systems, logistics,
flexible manufacturing systems, production systems andmaintenance systems; the reader is referred to [1] for an extensive
overview of the applicability of polling models. Over the past few decades the performance analysis of polling models has
receivedmuch attention in the literature.We refer to Vishnevskii and Semenova [2] for an excellent overviewof the available
results on polling models.

In this paper, we study cyclic polling models with gated or globally gated service, and focus on the transient behavior of
the successive cycle times. Our goal is to gain an understanding in the dependency structure between the different cycles.
This study is motivated by our interest in systems where disruptions or breakdowns may occur, often leading to excessive
cycle lengths. In this context, we are interested in the following questions:

1. If the system encounters an excessively long cycle time (e.g., due to a disruption or a breakdown), then how will that
influence the durations of the subsequent cycle times? What is the time needed to recover from excessive cycle times?
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2. What is the dependency structure between various residence and cycle times? More specifically, what is the correlation
between the successive cycle (and residence) times?

A primary motivation for the second question is that the dependency structure makes polling models challenging to
analyze. Insights into the dependency between cycles and residence times might pave the way for approximation methods.
For instance, for polling models in tandem, the output of some queues may feed into another queue. The output of a specific
queue in a polling system is essentially driven by an on–off source with dependent on and off times (‘on’ representing visit
times and ‘off’ representing intervisit times). Similar relations have also motivated the study of some vacation models, see
e.g. [3–5]. Finally, we note that waiting-time and queue-length distributions can be expressed in terms of the marginal
cycle-time distribution for polling models with (globally) gated and exhaustive service.

In this paper, we assume that the distribution of the first cycle (in case of globally gated service) or N residence times
(in case of gated service), where N is the number of queues, is known and that the arrivals are Poisson. Using this, we show
how the joint Laplace–Stieltjes transform (LST) of all x subsequent cycles (globally gated) can be expressed in terms of the
LST of the first cycle. Moreover, for the case of gated service we show how all x > N subsequent residence times can be
expressed in terms of the LST of the first cycle. From these joint LST’s, we derive the first two moments and correlation
coefficients between different cycles. Lastly, we analyze a heavy-tailed first cycle length, due to disruptions or breakdown,
or the heavy-traffic regime to provide new fundamental insights into the time-dependent behavior.

The remainder of this paper is organized as follows. In Section 2 the models are described and the method and goals of
the paper are outlined. In Section 3we study the case of globally-gated service, whereaswe study the case of gated service in
Section 4. Both sections contain asymptotic results, such as heavy-tailed initial cycle lengths and heavy traffic, and numerical
illustrations.

2. Model, method and goals

2.1. Model description

We consider a system ofN ≥ 2 infinite-buffer queues, Q1, . . . ,QN , and a single server that visits and serves the queues in
cyclic order. Customers arrive at Qi according to a Poisson process {Ni(t), t ∈ R} with rate λi. These customers are referred
to as type-i customers. The total arrival rate is denoted byΛ =

N
i=1 λi. The service time of a type-i customer is a random

variable Bi, with LST B∗

i (·), and kth moment E[Bk
i ], k = 1, 2, . . . , when it is finite. The kth moment of the service time of an

arbitrary customer is denoted by E[Bk
] =

N
i=1 λiE[Bk

i ]/Λ, k = 1, 2, . . . . The load offered to Qi is ρi = λiE[Bi] and the total
load offered to the system is equal to ρ =

N
i=1 ρi. The switch-over time required by the server to proceed from Qi to Qi+1

is a random variable Si with mean E [Si] and LST S∗

i (·). Let S =
N

i=1 Si, with LST S∗(·), denote the total switch-over time in
a cycle. We define δi(s) := λi(1 − B∗

i (s)) and let ei be a unit vector with 1 in the ith position and 0 in the other positions.
We consider the gated and globally gated service disciplines. When the service discipline is gated, a gate at Qi closes

when the server arrives at Qi. Every customer standing in front of the gate is served, while customers arriving at Qi during
service of Qi must wait for the next cycle, this holds for all i = 1, . . . ,N . When the service discipline is globally gated, a gate
closes at all queues when the server arrives at Q1. During the following cycle, every customer standing in front of the gate
is served.

2.2. Method and goals

Throughout we assume that the distribution of the length of the first cycle is known. For the gated service discipline, this
requires that the joint distribution of the first N residence times is known, where a residence time is a visit time plus the
subsequent switch-over time. When the probabilistic behavior of the first cycle is known, the next residence time can be
expressed in terms of the first cycle, as it consists of a visit time to serve all the work that arrived at the queue during the
first cycle plus the switch-over time. For globally gated, this is true for every queue, as the gate closes at the start of a cycle.
For gated, the length of a visit time is always determined by thework that arrived at the corresponding queue during the last
N residence times. It can be seen that the second cycle is completely determined in terms of the first cycle. Consequently,
the third cycle can be expressed in terms of the second cycle and so also in terms of the first cycle. As a result, every cycle
can recursively be expressed in terms of the first cycle. We use this fact to derive the joint LST of x consecutive cycles or
residence times in terms of the LST of the first cycle.

Let us first consider the globally gated case. Our goal is to determine the joint LST of x consecutive cycle times, denoted
by γx(z). The vector z of length x contains the variables z1, . . . , zx, corresponding to cycles 1, . . . , x, with the LST of the first
cycle, γ1(z), assumed to be given. Choosing the zi in specific ways, enables us to calculate all kinds of useful performance
measures. For example, when zi = z for all i ∈ J ⊆ {1, . . . , x} and 0 otherwise, we obtain the LST of the sum of cycles of set
J . Such a choice is especially convenient to calculate moments, which are then obtained by differentiating with respect to z
and taking z = 0.

Also, the covariance between cycle 1 and cycle x can be calculated using the following property of the covariance: if X1
and X2 are random variables, then Var(X1 +X2) = Var(X1)+Var(X2)+2Cov(X1, X2), with the variance of a random variable
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