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a  b  s  t  r  a  c  t

Recursive  system  identification,  due  to  its  easy  online  implementation  and  computation  efficiency,  has
been  widely  used  in  many  advanced  process  controls  such  as adaptive  control  and  model  predictive  con-
trol (MPC).  This paper  proposes  a  novel  two  dimensional  recursive  least  squares  identification  method
with  soft constraint  (2D-CRLS)  for batch  processes.  This  method  can  improve  the  identification  perfor-
mance  by  exploiting  information  not  only  from  time  direction  within  a batch  but  also  along  batches.  A
soft  constraint  term  is  incorporated  in  the cost  function  to reduce  the  variation  of  the  estimated  param-
eters.  A  bound  on weighting  matrix  has  been  established  as  the  sufficient  consistency  condition  in  the
paper  together  with  a practical  guideline  for weights  selection.  Results  based  on  the  experimented  data
for injection  molding,  show  the  superiority  of  the  proposed  method  over  the  conventional  identification
based  on  recursive  least  squares.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

System identification is an efficient and convenient approach to
build dynamic models based on input and observed output data
from real process with limited prior knowledge. It has been exten-
sively studied for decades in academics with fruitful results, e.g.
[1–3] and reference therein, and also widely applied in industry,
e.g. [4,5] and reference therein.

Batch process is an important class of manufacturing techniques
in modern industry. Due to its capability of manufacturing high-
value-added products with superior versatilities, batch process is
widely applied in many industries such as injection molding, semi-
conduct manufacturing and pharmaceutical industries. Compared
with continuous process, batch process has its own characteristics,
high nonlinearity, multi-phase, non-steady state, high repetitive-
ness, etc. Because of its unique properties and superior advantages,
batch process is receiving increasing attentions in both academics
and industries.

An accurate and reliable process model is crucial to the suc-
cessful application of most advanced control strategies developed
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for batch process. A few successful system identification applica-
tions to batch processes have been reported. For example, state
space model was identified online by RLS (recursive least squares)
for the adaptive control of a fed-batch fermentation [6]. A cas-
cade control structure was developed for the production of lactic
acid and baker’s yeast cultivation. An outer controller was  used
to search operating set-point and a inner controller to control the
dynamics of bioreactors adaptively by RLS forgetting factor identifi-
cation of the system parameters [7]. Based on RLS and second-order
autoregressive exogenous model (ARX), Yang and Gao applied a
self tuning regulator (STR) with pole placement and generalised
predictive control (GPC) to control injection molding nozzle pack-
ing pressure and velocity, respectively, with high precision [8,9]. In
[10], RLS was  used to estimate the time-varying process dynam-
ics for the GPC regulation of wood ash stabilisation. In [11], Shi
et al. designed a robust iterative learning control integrated with
feedback control for the control of injection velocity based on an
identified second-order ARX model. They further proposed a two
dimensional GPC controller based on an identified ARX model with
an excellent outcome [12].

All the above works employed directly system identification
approaches designed for continuous processes, ignoring the unique
nature of batch processes. There have been very few publications
on identification with consideration of batch natures, to the best
knowledge of the authors’. Ma  and Braatz developed an iterative
way to off-line identify a model for a batch process by minimising
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Nomenclature

Arabic number
2D two  dimensional

Arabic letters
Ak(t) parameter estimations weighting matrix
ARMAX autoregressive moving average exogenous model
ARX autoregressive exogenous model
a.s. asympototically
At(z), Bt(z) output and input polynomials of ARX model
bk(t),ck(t) posterior and priori prediction error(scalars)
E[x|y] take conditional expectation of x with respect to y
e(k, t) two  dimensional white noise
{Fk,t, k, t ∈ Z+} increasing sequence of �-fields
GPC generalised predictive control
J(k, t) cost function of t-time spot and kth batch
Pk(t) input and output information matrix
RHS right hand side
RLS recursive least squares
tr{ . } trace of a matrix
SISO single input single output
SNR signal-to-noise ratio
STR self tuning regulator
sup upper bound
uk(t) control input of t-time spot and kth batch
Vt(k) Lyapunov function of t-time spot and kth batch
w.r.t. with respect to
Xt(k) stochastic Lyapunov function
yk(t) control output of t-time spot and kth batch

Greek symbols
ı  batch-wise backward difference operator
ıi,j Kronecker delta
�k(t),�k(t), �k(t), �k(t), ωk(t) defined scalars
�0(t) vector of true system parameters
�̂k(t) vector of parameter estimation on t-time spot and

kth batch
�̃k(t) vector of estimation error on t-time spot and kth

batch
	min, 	max minimum and maximum eigenvalue

k(t) control input and output vector

Mathematical symbols
� defined as
‖ .‖ 2-norms
‖x‖2

A xTAx

Superscripts and subscripts
k batch index
t  time index
T transpose
0 true value

the model uncertainty [13]. Tayebi developed a two  dimensional
approach for some unknown parameters of the robot manipula-
tor dynamic equations in a continuous type, but did not provide
results on the performance of the estimator [14]. Chi et al. designed
a discrete-time two dimensional system identification method
integrated with adaptive iterative learning control (ILC), without
consideration of some constraints between time spots within a
cycle [15].

This article proposes a two dimensional online system identifi-
cation method suitable for batch processes with soft constraints on

time direction to reduce parameter variations. The main focus of the
algorithm is a two  dimensional cost function with a penalty term
imposed to smooth estimation along time. 2D-CRLS is obtained by
minimising a defined cost function. By virtue of martingale conver-
gence theorem, a stochastic form of Lyapunov function is defined
to yield consistency of the proposed 2D-CRLS. An upper bound of
weighting matrix is obtained to guarantee robust convergence of
the algorithm. Furthermore, a guildline for the selection of proper
weighing matrix in application is provided, together with numer-
ical simulations to demonstrate the advantages of the proposed
system identification algorithm. The paper is organised as follows.
Section 1 provides some necessary background information about
this paper and introduces the overall structure of the method.
Section 2 gives the problem setup and the derivation of the new
recursive identification algorithm. Section 3 analyses consistency
of the algorithm in stochastic scenario and gives the upper bound
of weighting matrix for convergence insurance. In Section 4, the
guildlines is established for the selecting of appropriate weights.
Section 5 illustrates the effectiveness of the method through a
numerical simulation. Finally, Section 6 draws the conclusion.

2. Problem description and algorithm derivation

The main objective of this work is to improve identification per-
formance from batch to batch, by exploiting the nature of batch
processes, which repetitively performs a given task over a finite
period of time. A soft constraint is introduced to the cost func-
tion between two consecutive sample times to reduce estimation
variation.

2.1. Problem description

Most batch processes are highly nonlinear in nature. A common
practice to tackle this nonlinear dynamic nature is to develop a
composite model over the time direction that is a combination of
a set of linear models each with finite time duration. For example,
in injection molding, the velocity vs. the hydraulic valve opening
is a typical nonlinear process. Yang approximated it by a set of
second-order ARX models along time direction [16]. Without loss
of generality, our work can be easily extended to other type of lin-
ear models, e.g. ARMAX. This paper focuses on the identification of
a time-varying ARX model as follows:

yk(t) + a1,0(t)yk(t − 1) + a2,0(t)yk(t − 2) + · · · + ana,0(t)
yk(t − na)  = b1,0(t)uk(t − d) + b2,0(t)uk(t − d − 1) + · · ·
+bnb,0(t)uk(t − d − nb + 1) + e(k, t)

(1)

where yk(t) and uk(t) are respectively the system output and control
input at the tth time in the kth batch, and ai,0(t) and bi,0(t) are the
system parameters at the tth time. Subscript 0 indicates the true
parameters of the system. d is the system delay, and na and nb
stand for the order of output and input dynamics, respectively, e(k,
t) is a zero-mean white noise and

E[e(i, j)e(k, t)] = �2ıi,kıj,t (2)

where ıi,k and ıj,t are Kronecker delta. ıi,k and ıj,t are both equal to
1 if and only if i = k and j = t, respectively.

Eq. (1) can also be represented as

yk(t) = 
T
k (t)�0(t) + e(k, t) (3)

where


k(t) = [−yk(t − 1) − yk(t − 2)·  · · − yk(t − na)uk(t − d)uk(t − d − 1)

· · ·uk(t − d − nb + 1)]T (4)
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