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a  b  s  t  r  a  c  t

A  new  non-parametric  process  identification  method  is proposed  to obtain  the  discrete-time  frequency
response  model  from  the  process  input  and  output  data.  The  existing  discrete-time  Fourier  transform
approach  can  be  applied  to only  the  case  that  the  initial  part  and the  final  part of the  process  data  are
zero-steady-state  to  estimate  perfect  frequency  response  data  without  modeling  errors.  The  proposed
method  using  a new  transform  can  estimate  the exact  frequency  response  model  from  more  various
process  excitation  cases  including  initial-steady-state/final-steady-state  and initial-steady-state/final-
cyclic-steady-state.  It can estimate  exact  frequency  response  model  because  no  approximations  are used
in developing  the  proposed  algorithm.  Also,  the proposed  method  can  still  provide  exact  model  even  in
the  case  of static  disturbances  and  sinusoidal  disturbances  of which  the  frequencies  are  multiples  of  the
cyclic-steady-state  frequency.

©  2014  Published  by Elsevier  Ltd.

1. Introduction

Nonparametric process identification methods to estimate frequency responses can be categorized into two types of continuous-time
approach and discrete-time approach. In recent years, a number of new continuous-time nonparametric process identification methods
have been developed while no remarkable progress in discrete-time nonparametric process identification methods has been achieved.

The describing function analysis method has been widely used to identify the ultimate frequency response from the relay feedback signal
[1–5]. The method was derived by neglecting the harmonics of the Fourier series and approximating the process signal to the fundamental
term. It shows serious modeling errors for asymmetric signals because of the approximation. The Fourier analysis method can overcome the
inaccuracy problem of the describing function analysis [6]. But, the describing function analysis and the Fourier analysis can provide only
one or two frequency response data for the relay feedback signal. To overcome the weakness, several improved versions of continuous-time
nonparametric process identification methods have been developed [7–13]. Luyben proposed a modification of the continuous-time Fourier
transform to estimate the frequency responses of continuous-time processes of which the initial part is zero-steady-state and the final part
is nonzero-steady-state [7]. Although it can provide all the frequency responses of the process without errors, it is valid only in the case that
the initial part and the final part of the process are steady-state. Two nonparametric continuous-time process identification algorithms
applicable to the case of zero-initial-steady-state and final-cyclic-steady-state were developed [8,9]. Recently, remarkable continuous-
time process identification methods [10–13] were proposed. They can theoretically extract all the frequency responses of the process and
provide exact estimates. Moreover, it can be applied to all the three types of process excitation of initial-steady-state/final-steady-state,
initial-steady-state/final-cyclic-steady-state and initial-cyclic-steady-state/final-cyclic-steady-state.

Note that all the above-mentioned approaches [1–13] are for continuous-time processes. Until now, many application studies using
the classical discrete-time Fourier transform have been published [14–23]. But, no novel nonparametric process identification methods for
discrete-time processes applicable to all the cases of initial-steady-state/final-steady-state, initial-steady-state/final-cyclic-steady-state
can estimate perfect frequency response data without any modeling errors from the theoretical point of view. The existing discrete-time
Fourier transform approach [23] in system identification and control textbooks can be applied to only the case that the initial part and the
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final part of the process data are zero-steady-state if we want to estimate all the frequency responses of the process without modeling
errors. Even though the accuracy of the exiting discrete-time Fourier transform approaches could be better as increasing the number of
the samples, the modeling errors can never be completely avoided [14,22,23].

In this paper, a new discrete-time frequency response model identification method for discrete-time processes is developed to overcome
the limitation of the existing discrete-time Fourier transform approach. It can estimate all the frequency responses of the process without
modeling errors. Also, it can be applied to more various types of process excitation including initial-steady-state/final-steady-state and
initial-steady-state/final-cyclic-steady-state.

2. Process excitation

Three types of process excitation are considered in this research: (Type 1) – both the initial part and the final part of the excited process
data are zero-steady-state (Fig. 1a), (Type 2) – both the initial part and the final part of the excited process data are steady-state (Fig. 1b),
(Type 3) – the initial part is steady-state and the final part is cyclic-steady-state (Fig. 1c).

The process data in Fig. 1a and b are obtained by a proportional controller with the step setpoint change. And, the relay feedback method
with changing the reference value for the relay on-off is used to obtain the process data in Fig. 1c.

Various forms of process excitation can be designed within the category of the above-mentioned three types. Any types of process
excitation can be inserted between the initial part and the final part because the three types in this paper restrict the state of only the
initial and final part and no restrictions are given to the other part between the initial part and the final part. For examples, it is possible
to increase the amount of the frequency information in the excitation signal by combining a step signal and a biased-relay feedback signal
as shown in Fig. 2a (Type 3) or a biased-relay feedback signal and a proportional control signal as shown in Fig. 2b (Type 2).

The proposed method can estimate all the frequency responses of the process without modeling errors from any process excitation data
belong to the above-mentioned three types. On the other hand, previous discrete-time Fourier transform approaches cannot provide exact
frequency responses theoretically for the process excitation cases mentioned in this paper because the ratio of the discrete Fourier spectra
of the process input and the process output is not equal to the transfer function due to the appearance of the initial and final process input
and output terms [14]. So, the application range of the proposed method is much wider than the previous discrete-time Fourier transform
approaches.

3. Proposed nonparametric process identification method

The previous discrete-time Fourier transform approach to estimate the frequency responses of the process cannot be applied to the
excitation types of Fig. 1b (Type 2) and c (Type 3). The objective of this research is to develop a new discrete-time frequency response
identification method applicable to all the three types of process excitation.

3.1. New transform

Consider the following assumptions and definition of a new transform before developing the proposed identification method.

Assumption 1. The process input and output after the nssth sample of Type 3 (Fig. 1c) are cyclic-steady-state of which the period is P.

Assumption 2. The dynamics of the discrete-time process is described by the following transfer function:

G(z) = y(z)
u(z)

= b1z−1 + b2z−2 + · · · + bm−1z−(m−1) + bmz−m

1 + a1z−1 + · · · + an−1z−(n−1) + anz−n
(1)

It is equivalent to the following difference equation:

y(k) + a1y(k − 1) + a2y(k − 2) + · · · + any(k − n) = b1u(k − 1) + b2u(k − 2) + · · · + bmu(k − m)  (2)

where G(z) is the discrete-time transfer function of the process. y(k) and u(k) denote the process output and the process input at the kth
sample. ai, i = 1, 2, . . .,  n and bi, i = 1, 2, . . .,  m are the parameters of the discrete-time process.

Definition 1. Let us define a new transform, QP,T {y(k)} = yP,T (q) as follows:

QP,T {y(k)} =
−1∑

k=−P

(y(k + 1) − y(k)) +
0∑

k=−P+1

(y(k + 1) − y(k))q−1 + · · · +
P+T−1∑

k=T

(y(k + 1) − y(k))q−(P+T) =
T∑

i=−P

[
i+P−1∑

k=i

(y(k + 1) − y(k))q−(i+P)

]
(3)

Property 1. The transform of Eq. (3) satisfies Eq. (4) if the initial part of y(k) is steady-state and the final part of y(k) after (T − j)th sample
is cyclic-steady-state.

QP,T {y(k − j)} = QP,T {y(k)}q−j = yP,T (q)q−j (4)

Proof. Consider the following transform of y(k − j).

QP,T {y(k − j)} =
−(1+j)∑

k=−(P+j)

{y(k + 1) − y(k)} + · · · +
−1∑

k=−P

{y(k + 1) − y(k)}q−j +
0∑

k=−P+1

{y(k + 1) − y(k)}q−(j+1) + · · · +
P+T−1−j∑

k=T−j

{y(k + 1) − y(k)}q−(P+T) (5)

Note that Eq. (6) is valid because the initial part of y(k) is steady-state (that is, y(k) for k ≤ 0 is a constant).

i+P−1∑
k=i

{y(k + 1) − y(k)}q−(i+P) = 0 for i ≤ −P (6)
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