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a  b  s  t  r  a  c  t

While  canonical  variate  analysis  (CVA)  has  been  used  as a dimensionality  reduction  technique  to take
into  account  serial  correlations  in  the  process  data  with  system  dynamics,  its  effectiveness  in fault  iden-
tification  (i.e.,  identification  of variables  most  closely  associated  with  a fault)  in industrial  processes  has
not been  extensively  investigated.  This  paper  proposes  CVA-based  contributions  for  fault  identification,
where  two  types  of  contributions  are  developed  based  on the  variations  in the  canonical  state  space  and
in  the  residual  space.  The  two  contributions  are  used  to  categorize  faulty  variables  into  state-space  faulty
variables  (SSFVs)  and  residual-space  faulty  variables  (RSFVs),  which  enhances  the  understanding  of  the
character  of each  fault  as well  as the  performance  of fault  monitoring  based  on  different  statistics.  The
effectiveness  of the  proposed  approach  is demonstrated  on  the  Tennessee  Eastman  process.  The simu-
lation  results  show  that  the  faulty  variables  identified  by the  CVA-based  contributions  can  impact  the
statistics  of the state  space,  the  residual  space,  or  both;  and  abnormal  events  are  observed  to  be more
often  linked  to faulty  variables  in the  residual  space  rather  than  in  the state  space.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A fault is defined as any abnormal event that occurs during pro-
cess operations. Investigating the causes of faults is critical for the
efficient and optimal operation of industrial processes. As manu-
facturing facilities become increasingly integrated and large-scale
– largely due to efforts to reduce energy costs, maximize profit, and
reduce environmental releases – the potential for faults to dynami-
cally propagate in nonintuitive ways to produce significant harm to
equipment, life, and the environment has increased. These trends
motivate the development of methods to quickly identify variables
associated with a fault as quickly as possible, preferably before its
effects propagate to the extent of becoming a major safety concern.
Such methods are collectively referred to as fault identification, in
contrast to fault detection, which is the first step in a data-based
process monitoring scheme that detects whether some fault has
occurred, and fault diagnosis, in which the specific cause of the fault
is determined.

Accurate first-principles dynamic models do not exist for most
manufacturing facilities, which is why existing process monitoring
systems in industry are typically constructed based on measured
data collected and stored in a historical database. In this approach,
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information about the process operations needs to be abstracted
from the historical data. This task of fault identification can be
rather challenging when there are a large number of strongly
correlated process variables, as is typical in most chemicals, petro-
chemicals, and refining operations.

The proficiency of identifying faults from data can be improved
using dimensionality reduction techniques, such as principal com-
ponent analysis (PCA) [1,2], partial least-squares (PLS) analysis
[3,4], and canonical variate analysis (CVA) [5–7]. In statistical pro-
cess monitoring, the PCA and PLS methods has been observed to
perform well for process measurements when the in-control vari-
ations are independent and identically distributed (i.i.d.). With the
i.i.d. assumption, the entire variability of the observations can be
explained by estimating the covariance without time lags. If the
vectors of observations are serially correlated, that is, the obser-
vations at one time instant are correlated with those at past time
instants, the zero-lag covariance matrix cannot fully represent the
entire variation.

To handle serially correlated multivariate observations, PCA
[8] and PLS techniques [9] have been utilized by constructing a
covariance matrix with time lags. A dynamic model is extracted
directly from data by performing the time lagged version of PCA
[10,11]. Utilizing the eigenvector of the covariance matrix that cor-
responds to the zero eigenvalue, a multivariate autoregressive with
exogenous input (ARX) model is developed in [10]. The eigenvector
corresponding to a nearly zero eigenvalue is an approximate rep-
resentation of the ARX model [5,10]. A drawback of this approach
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is the inflexibility of the ARX model for the description of dynamic
processes [12].

Aside from methods derived from PCA and PLS, CVA is also a
dimensionality reduction technique that selects pairs of variables
from the inputs and outputs that maximizes a correlation statistic
[12–14]. This method takes serial correlations into account dur-
ing the dimensionality reduction procedure. In the CVA approach,
the statistical model extracted by the CVA approach is in the form
of a state-space model where the state variables are statistically
independent at zero lag [5].

Contribution plots [15] are the most popular technique for
determining which variables are most strongly associated with the
statistics no longer being within the normal operating condition
(NOC). A higher contribution of a process variable indicates that the
fault-related deviations in the specific variable are larger. Several
efforts have been published that identified weaknesses and/or pro-
posed modifications of contribution charts to improve their ability
to identify the variables of most value in identifying the location of
the fault (aka “faulty variables”). Utilizing a scheme of PCA-based
contribution plot, Kourti and MacGregor [16] determined faulty
variables of a high-pressure low-density polyethylene reactor, and
reported that the PCA-based contribution plots may  not always
correctly identify the most important variables associated with a
fault. Yue and Qin [17] proposed an index that combines T 2 and Q
statistics during fault identification, which was shown to be more
effective than using a single statistic [18]. By introducing confidence
limits into contribution plots, Westerhuis et al. [19] improved the
statistical analysis of faulty variables, and concluded that the contri-
bution plots should be carefully interpreted due to a smearing effect
in the residuals of PCA. Since the smearing effect may  mislead the
determination of faulty variables, Liu [20] proposed contribution
plots without the smearing effect on non-faulty variables by max-
imizing the reduction of a combined index through a missing data
method. The data-driven and model-based methods for fault iden-
tification were comprehensively compared in [21], which reported
that the identification of simple faults can be easily provided by
contribution plots, while the determination of complicated faults
needs additional information about the process operations. Fur-
thermore, a reconstruction-based approach for determining faulty
variables from the subspace of abnormal events is developed in
[18,22], where an identification index is utilized to identify faults.
The identification index is defined as the ratio of the reconstructed
squared prediction error (SPE) to the faulty SPE.

Both PCA- and PLS-based contribution plots are limited in their
ability to quickly identify faults because the underlying PCA and
PLS methods do not produce the most accurate dynamic models,
even when lagged data are used in their construction. This draw-
back has been recognized, and contribution plots in conjunction
with state-space models have been carried out to better take into
account the process dynamics [23–26,29]. In a few studies [23–25],
subspace system identification based on N4SID has been utilized
to obtain a state-space model that was used to construct contri-
bution plots. Although CVA has been demonstrated to outperform
N4SID for subspace identification in terms of stability and parsi-
mony (fewer parameters) in the representation of dynamic systems
[26–28], investigation on the application of contribution plots to
CVA is limited. In one study where contribution plots and CVA-
based state-space models were investigated [29], contributions
were calculated based on the statistics of the states in the state-
space model. In the study [29], process inputs were not considered
in the state-space model.

In this article, the contribution plots are proposed to be applied
to both the state space (retained states in the state-space model
obtained via CVA) and the residual space (the rest of the states in
the CVA model), to examine the utility of the two different meas-
ures for fault identification. The two types of contributions (state

space and residual space) correspond to different characteristics
of the process and can potentially provide more insights into the
fault. This article plots the contributions as two-dimensional color
maps, which allows improved fault identification compared to the
traditional one-dimensional plots [30].

The rest of this paper is organized as follows. The CVA approach
is briefly described in Section 2. The contribution maps for CVA-
based state and residual spaces are developed in Section 3. The
effectiveness of the proposed scheme is demonstrated in the Ten-
nessee Eastman process in Section 4, followed by conclusions in
Section 5.

2. Canonical variate analysis (CVA) revisited

2.1. The CVA statistical method

CVA is a dimensionality reduction technique in multivariate
statistical analysis, which maximizes a correlation statistic with
selected two  sets of variables. Assuming process input and output
vectors x ∈ Rm and y ∈ Rn with covariance matrices ˙xx and ˙yy

and cross-covariance matrix ˙xy , matrices J ∈ Rm×m and L ∈ Rn×n

can be obtained under the condition that{
J˙xxJT = Im

L˙yyLT = In

(1)

and

J˙xyLT = D = diag (�1, . . .,  �r, 0, . . .,  0) (2)

where m = rank(˙xx), n = rank(˙yy), r = rank(˙xy), � i (i = 1, 2, . . .,
r) are canonical correlations with �1 ≥ · · · ≥ � r, and Ik is a block-
diagonal matrix with a k × k identity matrix as the first block and
a zero matrix as the second block [13]. The vectors of canonical
variables c = Jx and d = Ly contain a set of independent variables
with the covariance matrix ˙cc = Im and ˙dd = In, respectively.

By solving the singular value decomposition (SVD)

−1/2∑
xx

∑
xy

−1/2∑
yy

= U˙VT, (3)

the matrix of canonical correlations D can be computed as D = ˙;
and the projection matrices J and L can be obtained as J = UT ˙−1/2

xx

and L = VT ˙−1/2
yy , respectively. The matrices UT and VT rotate

the canonical variables to be pairwise correlated, and the matrices
˙−1/2

xx and ˙−1/2
yy scale the canonical variables to be unit variance.

2.2. CVA state vector

Hotelling proposed the CVA concept for multivariate statistical
analysis, but CVA was  not utilized for stochastic realization theory
and system identification until Akaike’s work on ARMA models [13].
The CVA approach was  further developed using state-space models
by Larimore [13]. Given time series output data y(t) ∈ Rmy and input
data u(t) ∈ Rmu , the linear state-space model is given by [31,33]

x(t + 1) = Ax(t) + Bu(t) + v(t) (4)

y(t) = Cx(t) + Du(t) + Ev(t) + w(t) (5)

where x(t) ∈ Rd is a d-dimensional state vector, v(t) and w(t) are
independent white noise processes, and A, B, C, D, and E are coeffi-
cient matrices.

At a particular time instant t = 1, 2, . . .,  the vector including the
past information is given by

p(t) = [yT(t − 1),  yT(t − 2),  . . .,  uT(t − 1),  uT(t − 2),  . . .]
T

(6)
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