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a  b  s  t  r  a  c  t

Feature  extraction  is  crucial  for  fault  diagnosis  and  the use  of  complementary  features  allows  for  improved
diagnostic  performance.  Most  of  the  existing  fault  diagnosis  methods  only  utilize  data-driven  and  causal
connectivity-based  features  of faults,  whereas  the important  complementary  feature  of the  propagation
paths  of faults  is  not  incorporated.  The  propagation  path-based  feature  is important  to  represent  the
intrinsic  properties  of  faults  and  plays  a significant  role  in fault  diagnosis,  particularly  for  the  diagnosis  of
multiple  and  unknown  faults.  In  this article,  a three-step  framework  based  on the modified  distance  (DI)
and modified  causal  dependency  (CD)  is proposed  to integrate  the  data-driven  and  causal  connectivity-
based  features  with  the  propagation  path-based  feature  for  diagnosing  known,  unknown,  and  multiple
faults.  The  effectiveness  of  the  proposed  approach  is  demonstrated  on  the  Tennessee  Eastman  process.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Feature extraction is a process that builds derived values (fea-
tures) from an initial set of information to inform and facilitate
the desired task, in some cases leading to better human interpreta-
tions. Feature extraction is crucial for fault diagnosis. Extraction of
features that can fully reflect the intrinsic properties of the faults,
especially the unknown and multiple faults, is still a challenging
problem. This issue has not been extensively explored in fault mon-
itoring, in contrast to the high level of achievement in pattern
recognition and image processing [1].

The purpose of fault diagnosis is to determine the root causes of
process faults, which facilitates efficient, safe, and optimal oper-
ation of industrial processes [2]. The chemical industry mostly
constructs process monitoring systems based on process data,
and several reviews on fault diagnosis based on data-driven fea-
ture extraction are available [3–8]. Those fault diagnosis methods
typically do not utilize the preliminary process knowledge. The
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traditional techniques purely based on historical process data have
an inherent limitation for diagnosing multiple faults. Multiple
faults can be defined as two or more faults occur simultaneously
or sequentially, which can be categorized as being of four types:
induced fault, independent multiple faults, masked multiple faults,
and dependent faults [9], as shown in Fig. 1. The joint effect on
overlapping variables can be very different than the effect of the
individual faults. In those data-driven diagnosis techniques, a few
variables are isolated as the candidates for the likely root cause of
the faults. In large-scale plants with high complexity, it is difficult to
conclude whether a certain variable is the root cause by analyzing
plant data alone [10,11].

To address this drawback, the feature representation of causal
connectivity of the components within the plant is considered
and several ways of combining data-driven techniques with cause-
and-effect information from a process flow diagram or piping and
instrumentation diagram have been carried out. Lee et al. [9] uti-
lized a hybrid method of signed digraph and partial least squares
for the fault diagnosis of chemical processes. Using the local qual-
itative relationships of each variable in a signed digraph, a process
is decomposed into subprocesses. A partial least-squares model is
then built for the estimation of each measured variable in each
decomposed subprocess. Alternately, Thornhill et al. [12] showed
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Fig. 1. Four types of multiple faults: (a) induced faults, (b) independent faults, (c)
masked multiple faults, and (d) dependent multiple faults. A node represents a
symptom and a vector represents the causal relationship between two  nodes.

how data-driven methods in combination with cause-and-effect
relationships among process variables could lead to efficient root
cause diagnosis, where the root cause of a plant-wide oscilla-
tory disturbance was determined, and its means of propagation
understood. More recently, Thambirajah et al. [13] also developed
an approach that combines the data-driven technique of transfer
entropy with a technique that uses the cause-and-effect informa-
tion in the plant schematic in the form of a connectivity matrix.
The core technology for the extraction of a connectivity matrix is
an XML  code of the chemical plant that represents the items of
equipment and the links between them.

Aside from the feature extractions from data-driven and causal
map  techniques, the propagation path of a fault is another impor-
tant feature for representing the intrinsic properties of faults. As
shown in Fig. 1, different faults often have their own  distinctive
dynamic propagation among process variables. Such information
plays a significant role in fault diagnosis, particularly for the diagno-
sis of multiple and unknown faults. The feature of fault propagation
path is significantly different from the aforementioned two feature
representations extracted from plant data and causal connectiv-
ity (DI and CD, respectively), and can effectively complement them
to allow better diagnostic performance. It was shown in [14] that
the information provided by different feature representations can
be complementary and the use of complementary features greatly
improves diagnosis performance.

This study proposes a scheme that incorporates more com-
plete feature representations for fault diagnosis. Previously, the
authors introduced the modified distance (DI) and modified causal
dependency (CD) to incorporate the data-driven approach in con-
junction with the causal connectivity-based approach for detecting
and identifying faults [16]. The DI is based on the Kullback–Leibler
information distance (KLID), the mean of the measured variables,
and the range of the measured variables. The CD is derived based
on the multivariate T2 statistic. This article presents an approach
based on the DI/CD that systematically utilizes a more complete
set of feature representations, including the data-driven, causal
connectivity-based, and propagation path-based features, for diag-
nosing known, unknown, and multiple faults.

The rest of this article is organized as follows. Section 2 describes
the DI/CD-based algorithm for diagnosing known, unknown, and
multiple faults. The proposed method is evaluated in Section 3

using data sets from a chemical plant simulator for the Tennessee
Eastman Process. Section 4 summarizes the conclusions.

2. Methods

2.1. Modified distance and modified causal dependency

The modified distance (DI) and modified causal dependency
(CD), which serve as the basis of the proposed diagnosis method for
multiple and unknown faults, are briefly reviewed in this section.
More details of the two  techniques can be found in [16].

The DI is based on the Kullback–Leibler information distance
(KLID), the mean of the measured variables, and the range of the
measured variable. The DI is used to measure the similarity of the
measured variable between the current operating condition and
historical operating conditions. When the DI is larger than the
predefined threshold, the variable is identified as abnormal with
respect to the historical operating conditions. The KLID for the his-
torical distribution of the variable q is defined by

f q
h,t

:=I(pq
h,t

, 1) (1)

where the historical distribution pq
h,t

is constructed for data
collected from time t − b + 1 to t (b is the window size), I(p1,
p2) :=

∫
p1(x)ln(p1(x)/p2(x))dx where p1(x) and p2(x) are two dis-

tributions, and the integral is calculated numerically. When pq
h,t

is
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is equal to zero.
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where the mean and the range of the variable q at current time t = T
is

mq
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and
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respectively.
The normalized KLID associated with the recent distribution and

the historical distribution for the fault is defined by

Fq
r,t:=

f̃ q
r,t

mean(̃f q
h,t

) + nrstd(̃f q
h,t

)
(7)

where nr is a constant used to specify the misclassification error
(type-I error) which can be determined based on the historical
data. A similar recent distribution and the historical distribution
will result in Fq

r < 1.
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