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a  b  s  t  r  a  c  t

This  paper  presents  a tuning  method  for the model  predictive  control  (MPC)  based  on  the transfer  function
formulation,  also  known  as  generalized  predictive  control  (GPC).  The  aim  of  the  method  is  to  find  the
tuning  parameters  of  GPC  to obtain  the  same  behavior  as  an  arbitrary  linear-time-invariant  (LTI)  controller
(favorite  controller).  The  approach  consists  of  two steps.  The  first  step  matches  GPC  gain  to  that  of  the
favorite  controller  by equating  the  respective  coefficients  of the transfer  function  of  the  control  law  to
those  of  the favorite  controller.  This  step  is  followed  by finding  the weighting  matrices  in  the  cost  function
that  will  result  in  the  GPC  gain  which  is obtained  in  the  first step.  This  proposed  tuning  approach  does
not  require  either  loop-shifting  techniques  to deal with  non-strictly-proper  favorite  controllers  or  equal
prediction  and  control  horizons  as  in conventional  inverse  optimality  problems.  In this  paper,  we  also
extend  the  method  to the  feed-forward  case, which  is  seldom  considered  in standard  reverse-engineering
tuning  methods.  The  feasibility  conditions  of  the  matching  of  a GPC  with  a favorite  controller  are  analyzed
and  the limitation  in  control  space  the GPC  can  span  with  different  tuning  settings  is  shown.  The  proposed
tuning  method  is demonstrated  on a binary  distillation  column  example.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Model predictive control (MPC) is an established advanced process control technology and has been a standard tool for implementing
multivariable constrained control in process industries. Broadly speaking, MPC  technology refers to a class of control algorithms which
solve an optimization problem subject to system constraints and explicitly uses a process model. Since its introduction in [1], theoretical
developments and practical applications have progressed steadily and the technology has also been adopted by application domains other
than traditional process industries [2,3].

Despite its flexibility in formulating the control problem and its broad and growing number of applications, MPC  as a technology
exhibits an uneven success rate across the process industry [4]. One of the major reasons for this is the lack of monitoring and maintenance
of MPC  systems leading to performance deterioration [5]. There could be several reasons for performance degradation such as model
deterioration, change of operating conditions and disturbance characteristics. The shortage of skilled process engineers who can provide
maintenance support is also a contributing factor. Factors like these, in most cases, lead to switching off MPC  completely and returning to
manual operation. In order to circumvent such shortcomings, a support strategy addressing the performance-related aspects of MPC  in a
systematic way is critical.

The performance of MPC  and maintaining this performance require successful completion of several steps ranging from control structure
selection to model adaptation as well as the MPC  tuning [4]. For example, the closed-loop performance could be affected by a change in
the plant dynamics [6] or disturbance characteristics. In such cases, re-tuning or auto-tuning the MPC  can be considered as a solution to
the restoration of performance [7,8] as obtaining a new model can be costly. This paper contributes to the MPC  tuning problem which is
currently addressed by practitioners in an ad-hoc manner.

The tuning of MPC  involves selecting the parameters in the cost function, the disturbance model and the state observer if the state-space
formulation is used. There are various approaches to the tuning of MPC. Garriga and Soroush [9] report that majority of the studies on
MPC tuning fix the prediction horizon at a value that covers the main dynamics of the open-loop system, and select the control horizon
based on computational capacity. Garriga, Trierweiler, and Lee and Yu [10–12] tackle the tuning problem by analyzing the performance
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specifications of MPC  such as closed-loop poles, robustness and sensitivity functions. Maurath et al. [13] and Shridhar and Cooper [14] find
the tuning parameters by considering the conditioning of the control law.

A very active research topic in MPC  tuning is controller matching, which aims to compute the tuning parameters such that MPC matches
an arbitrary LTI controller, also referred to as the favorite controller. The motivation for this approach is to interpret the available degrees
of freedom in the MPC  cost function while the constraints are inactive, which is not straightforward [15]. When MPC  operates closely
to the constraints and when active constraints occur frequently, the system will take advantage of the traditional ability of MPC. When
MPC operates away from the constraints (e.g. at commissioning), the system can inherit the characteristics of an LTI controller, e.g. its
robustness.

The matching of MPC  with an LTI controller when MPC is formulated based on the state-space models has been investigated by several
authors [15–20]. In such a formulation, the unconstrained solution of MPC  can be written as a state feedback control law and the aim
of the matching is to minimize the error between the state feedback gain of the favorite controller and that of MPC. The foundation of
this approach is the inverse problem of linear optimal control, laid by Kalman [21] and Anderson and Moore [22]. This problem aims at
finding the weighting matrices of the linear quadratic regulator (LQR) in order to match a given linear feedback gain. The inverse optimality
problem is extended to a more general cost function in [23] with a cross-product term between the state and the control input. In [17], a
matching method based on formulating an optimization problem with linear matrix inequality (LMI) or bilinear matrix inequality (BMI)
constraints is proposed. The cost function of the optimization problem is the error between the control action of the MPC  and the favorite
controller. The above matching methods based on the inverse problem of linear optimal control usually consider the case in which the
MPC  is equivalent to an LQR and the states of the system are available.

In many applications, the states of the system are not measurable and the use of a state observer is required. In [16], the observer is
designed with the loop-shaping procedure introduced in [24] and the tuning parameters of MPC  are found by investigating the inverse
problem of the normalized left co-prime factorization (NLCF) optimal control. In [20], separate designs of the robust observer and state
feedback gain are used for the matching purpose, and non-convex optimization techniques are employed to perform the matching when
the terminal weight is not used. Chmielewski and Manthanwar [19] investigate the inverse optimality with Kalman filter augmentation
and shows how to make MPC  match the minimum variance covariance constrained control (MVC).

In [25], it is shown that robustness is not guaranteed even when one attempts to design a “good” observer and a state feedback gain.
Based on this observation, Hartley and Maciejowski [15] make use of the observer realization techniques described in [26] to divide a
favorite controller into the observer part and state feedback part before performing the matching. A major drawback of this approach is
that if a favorite output feedback controller contains a feed-through term from the outputs to the control inputs (i.e. a non-strictly-proper
controller), loop-shifting techniques must be used to “transfer” the feed-through term to the dynamics of the plant so that the matching
is feasible. Introducing some assumptions, Hartley and Maciejowski [18] have proposed a solution to the problem by considering the
feed-through term in the framework of reference tracking.

Due to the nature of the inverse optimality problem [21–23], the controller matching is often studied with a state-feedback MPC  law
and an observer design. Nevertheless, MPC  can also be formulated by transfer functions and this formulation is also well adopted by several
MPC providers in process industry [27]. The MPC  based on transfer function models (GPC) was  introduced in [28,29] and further developed
in [30]. Although there is certain equivalence between the GPC and the state-feedback MPC, there are differences in formulating the cost
function and computing the solution.

Several studies have also been reported in literature for the tuning of GPC. Shah and Engell [31,32] proposed a tuning method such
that the poles and zeros of the closed-loop system approximate certain desired ones. Shah and Engell [33] make use of optimization
techniques to find an output feedback gain that minimizes the difference between the closed-loop behavior of the GPC and the desired
behavior in the frequency domain. In that work, the tuning parameters are found by solving a convex optimization problem with LMI
constraints. The approach is limited to the case where the control horizon is 1. Other tuning rules for the weighting matrices in GPC
in literature are quite heuristic. Clarke and Mohtadi [34] show how the horizons and weighting factors affect the stability of GPC. They
suggest choosing an input weight of 0 or a small value and augmenting the plant with an auxiliary model to achieve robustness and to
perform pole-placement. This tuning approach is applied to a paper machine benchmark in [35]. Yoshitani and Hasegawa [36] heuris-
tically set the input weight to 0.6 in the GPC for their heating furnace in continuous annealing to achieve a satisfactory performance.
Karacan et al. [37] use the default values in [34] for the horizons of the GPC and varies the input weight to compare the simulated
output error of the system at different tuning settings. Yamamoto et al. [38] fixes a long horizon and a control horizon of 1 and heuris-
tically chooses the input weight based on the corresponding complementary sensitivity function. The criterion for finding a suitable
input weight is based on small gain theorem [39] and therefore information on the model uncertainty is required. Banerjee and Shah
[40] show that by increasing the input weight, the controller is de-tuned and becomes more sluggish and robust. Therefore, an input
weight higher than 1 and lower than 2 is proposed to guarantee some level of robustness while guaranteeing the closed-loop nominal
performance.

The focus of this paper is to propose a systematic tuning method for GPC that matches a GPC with a favorite controller when the
constraints are inactive. Instead of using optimization techniques, we solve a set of linear equations to find the output feedback gain of
GPC. To this end, the rank conditions of coefficient matrices are investigated. Once the rank conditions are fulfilled, an output feedback gain
that guarantees the matching can always be found. Then, a convex optimization problem with LMI  constraints similar to [17] is used to find
the tuning parameters which provide the computed output feedback gain. The degrees of freedom of the convex optimization problem
are increased by extending the objective function of the GPC with cross-product terms between the outputs and inputs. The proposed
approach does not require any loop-shifting technique to tackle the feed-through term from output to input in the controller and also
allows a control horizon greater than 1.

Moreover, in many studies on reverse-engineering tuning methods [15–17,20,31–33], the measurable disturbances in MPC are not
considered. The observer realization in [26] did not tackle the feed-forward control either, which may  pose limitations on the matching
of the state-space MPC. In this work, the matching of the transfer functions can also be used for matching the feed-forward control in the
favorite controller.

This paper is organized as follows. Section 2 presents the formulation and notations used throughout the paper. Section 3 presents the
problem formulation and Section 4 provides the method to find the output feedback gain for the matching. The approach to the computation
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