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a  b  s  t  r  a  c  t

Unexpected  or time-varying  deterministic  type  load  disturbances  are  often  encountered  when  perform-
ing identification  tests  in practical  applications.  A  bias-eliminated  subspace  identification  method  is
proposed  in  this  paper  by developing  an  orthogonal  projection  approach  to  guarantee  consistent  estima-
tion  on  the  deterministic  part of  the  plant,  in  combination  with  a Maclaurin  time  series  approximation
on  the  output  response  arising  from  deterministic  type  load  disturbance.  The  rank  condition  for  such  an
orthogonal  projection  is  disclosed  in  terms  of  the  state-space  model  structure  adopted  for  identification.
Using  principal  component  analysis  (PCA),  the  extended  observability  matrix  and  the  lower  triangular
Toeplitz  matrix  of the  state-space  model  are explicitly  derived.  Accordingly,  the  plant  state-space  matri-
ces  can  be  retrieved  from  the  above  matrices  through  a  shift-invariant  algorithm.  A  benchmark  example
from  the  literature  and  an  illustrative  example  of  industrial  injection  molding  are  used  to  demonstrate
the  effectiveness  and  merit  of the  proposed  identification  method.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Owing to the convenience of state-space plant description for
multivariable control system design in modern industry [1–3], sub-
space identification methods have been intensively explored in
the last two decades as surveyed in the references [4,5]. A few
state-space model identification methods (SIMs) have been well
recognized for practical application, for example, the canonical
variate analysis (CVA) approach [6], the multiple-input-multiple-
output error state space model identification (MOESP) method [7],
the numerical subspace state space identification (N4SID) algo-
rithm [8], and the instrumental variable method (IVM) [9]. The
similarity on consistent estimation and differences in asymptotic
properties between these SIMs were discussed in the literature
[10]. Insightful analysis on the conditions for consistency and
the asymptotic variances of the above SIMs can be found in the
references [11–13]. To guarantee model veracity for real plants
with stable response characteristics in nature, a few SIMs for
obtaining a stable type state-space model were developed in
the references [14–16]. A systematic approach for identifying a
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linear time-invariant state-space model of stable type together
with proper model structure selection was  presented in the bib-
liography [17]. The recent paper [18] proposed an SIM to obtain a
minimal-dimension state-space model in the canonical form, thus
connecting SIM with the classical transfer function parameter esti-
mation that was primarily based on the prediction error method
(PEM) [19]. For closed-loop subspace model identification, which
is subject to correlation between the future control inputs and past
outputs and measurement noise, the principal component analy-
sis (PCA) approach [20,21] and the orthogonal projection methods
[22,23] were proposed for bias-eliminated model identification. By
comparison, a parallel implementation of the standard causal SIM
algorithm [24] was developed for closed-loop consistent estima-
tion, and subsequently, a predictor based subspace identification
(PBSID) method [25] was given to circumvent the feedback issue
in contrast to the CVA-type identification method. Analysis on the
consistency and asymptotic properties of closed-loop SIMs can be
found in the references [26–29].

Note that most of the existing SIMs including the aforemen-
tioned methods are based on identification tests with or without
stochastic load disturbance. For the presence of deterministic
type load disturbance, little research effort, however, has been
devoted to the corresponding SIMs, except for a few references (e.g.
[30]) which developed alternative identification methods based
on a prior knowledge of disturbance dynamics. In many industrial
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applications, unknown or time-varying deterministic type distur-
bances are often encountered when performing identification tests,
which will inevitably cause identification errors, especially for the
static transfer function gain that reflects the steady-state balance.
Note that the influence from a static type load disturbance cannot
be removed exactly by change of the coordinates when measure-
ment noise appears, in particular for a piecewise linear model
identification of a nonlinear process. Moreover, waiting for no pres-
ence of load disturbance to perform an identification test can be
quite troublesome and time-consuming in practical applications,
especially for industrial processes with slow response dynamics.

This paper proposes a bias-eliminated SIM to tackle the above
problem by developing an orthogonal projection method for con-
sistent estimation on the deterministic part of the plant while
using a Maclaurin time series approximation to mimic  the output
response arising from deterministic type load disturbance. Based
on the state-space model structure adopted for identification, the
persistent input excitation condition and the rank condition for per-
forming an orthogonal projection based identification algorithm
are disclosed to guarantee consistent estimation on the extended
observability matrix and the lower triangular Toeplitz matrix of the
plant state-space model. Consequently, a shift-invariant approach
is adopted to retrieve the plant state matrices. Moreover, an alter-
native approach for the asymptotic variance analysis is given for
practical application. A benchmark example from the literature is
used to demonstrate the effectiveness and merit of the proposed
method along with an illustrative application to an industrial injec-
tion molding process.

Throughout the paper, the following notations are used. Denote
by �n×m an n × m real matrix space. For any matrix P ∈ �m×m, P > 0
means P is a positive definite matrix. For P ∈ �m×m of full rank,
denote by P−1 the inverse of P, by PT the transpose of P, and by
det(P) the matrix determinant; for P ∈ �m×n of full row (or col-
umn) rank, denote by P† the Moore–Penrose pseudo-inverse of P.
Denote by rank (P) the rank of P, and by vec(P) the column vector
obtained by stacking the columns in P on top of each other. The iden-
tity/zero vector or matrix with appropriate dimensions is denoted
by I/0, where Im indicates Im ∈ �m×m and 0m×n for 0m×n ∈ �m×n.
Denote by E{•} the mathematical expectation operator, and by o(•)
an infinitesimal with respect to (•). Denote by ⊗ the Kronecker
product between two matrices, and by ıi,j the Kronecker delta func-
tion, with ıi,j = 1 for i = j and ıi,j = 0 for i /= j. Denote by PE(u) the
persistent excitation order of the input signal for identification, and
by z a time shift operator to the sample data, i.e. zu(t):=u(t + 1).
Denote by �/V an orthogonal projection for � ∈ �m×j onto the row

space of V ∈ �n×j , which is computed through �/V = �VT (VVT )
−1

V.
Denote by �⊥ ∈ �m×(m−j) the orthogonal complement matrix to the
column space of � ∈ �m×j if m > j.

2. Problem description

In practical applications subject to load disturbance and mea-
surement noise, a plant to be identified is described generally by
the following state-space model,{

x(t + 1) = Ax(t) + Bu(t) + d(t)

y(t) = Cx(t) + Du(t) + �(t)
(1)

where x(t) ∈ �nx , u(t) ∈ �nu , y(t) ∈ �ny , and (A, B, C, D) are the state
matrices with appropriate dimensions; d(t) ∈ �nx denotes load dis-
turbance entering into the plant states, while �(t) ∈ �ny indicates
the output measurement noise usually assumed to be a Gaussian
white noise sequence with zero mean and unknown variance.

Since model identification uses the measured input and output
data only, due to the fact that it is often difficult or even impossible

to know exactly the internal states of the plant, we decompose the
state response by

x(t) = xu(t) + xd(t) (2)

where xu(t) and xd(t) denote the state response corresponding to
u(t) and d(t), respectively, i.e.{

xu(t + 1) = Axu(t) + Bu(t)

yu(t) = Cxu(t) + Du(t)
(3)

{
xd(t + 1) = Axd(t) + d(t)

yd(t) = Cxd(t)
(4)

Correspondingly, the output response can be expressed in terms
of the linear superposition principle as

y(t) = yu(t) + yd(t) + �(t) (5)

where yd(t) ∈ �ny is a deterministic but unknown output response
arising from deterministic type load disturbance. Note that yd(t)
may  also represent unmatched output response in the case of
model mismatch for identification.

To identify the plant state matrices (A, B, C, D), we reformulate
the plant description in the following form:{

xu(t + 1) = Axu(t) + Bu(t)

y(t) = Cxu(t) + Du(t) + yd(t) + �(t)
(6)

The following assumptions are considered herein for model
identification:

A1: The system described by (6) is asymptotically stable, i.e. all
the eigenvalues of A lie inside the unit circle.

A2: The system description in (6) is minimal in the sense that
(A, B) is reachable and (A, C) is observable.

A3: The output measurement noise, �(t), is independent of the
plant state, x(t), including the true output, �y(t) = Cxu(t) + Du(t) +
yd(t), and the input excitation, u(t), i.e.

E
{

�(t)
[

xT (k) �yT (k) uT (k)
]}

= 0, ∀t,k (7)

Given a stochastic sequence, f(t), with a finite number of sam-
pled data (N), denote the statistical mean by

Ê[f (t)] = 1
N

N∑
t=1

f (t) = E[f (t)] + o(1/N) (8)

where o(1/N) is infinitesimal when N → ∞.
Regarding the initial sampling time, t0, for collecting the

response data, we  define the ‘past’ and ‘future’ input Hankel matri-
ces, respectively, by

Up �

⎡
⎢⎢⎢⎢⎣

u(t0) u(t0 + 1) · · · u(t0 + j − 1)

u(t0 + 1) u(t0 + 2) · · · u(t0 + j)

...
... · · ·

...

u(t0 + i − 1) u(t0 + i) · · · u(t0 + i + j − 2)

⎤
⎥⎥⎥⎥⎦ ∈ �inu×j (9)

Uf �

⎡
⎢⎢⎢⎢⎣

u(t0 + i) u(t0 + i + 1) · · · u(t0 + i + j − 1)

u(t0 + i + 1) u(t0 + i + 2) · · · u(t0 + i + j)

...
... · · ·

...

u(t0 + 2i − 1) u(t0 + 2i) · · · u(t0 + 2i + j − 2)

⎤
⎥⎥⎥⎥⎦

× ∈ �inu×j (10)

where p = i and f = 2i − i = i denote the ‘past’ and ‘future’ data hori-
zon adopted for computation.
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