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a b s t r a c t

The future wireless communication will come up with a strict requirement on high spectral efficiency,
developing novel algorithms for spectrum sensing with deep sensing capability will be more challenging.
However, traditional expert feature-based spectrum sensing algorithms are lack of sufficient capability
of self-learning and adaptability to unknown environments and complex cognitive tasks. To address this
problem, we propose to build up a deep learning network to learn short time-frequency transformation
(STFT), a basic entity of traditional spectrum sensing algorithms. Spectrum sensing based on the learning
to STFT network is supposed to automatically extract features for communication signals and makes de-
cisions for complex cognitive tasks meanwhile. The feasibility and performances of the designed learning
network are verified by classifying signal modulation types in deep spectrum sensing applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As the attention is now turning towards the 5th generation
(5G) and beyond technologies, researchers and practitioners have
joined the definition and development of the next-generation
wireless networks. Though future network requires higher end-
user data rates over the Internet, new traffic types and data
services, energy-efficient networks are the key driving forces of
the development and evolution of 5G networks. Cognitive radio
(CR)which can facilitates efficient spectrum use of current licensed
spectrum, is considered as a potential solution to the problem of
spectrum scarcity. However, there are further challenges for spec-
trum sensing technologies in pace with developing of future 5G
networks. Firstly, spectrum sensing should be developed toward
deep sensing, which means that in addition to detect spectrum
occupancy, it is also necessary to exploit and acquire the com-
prehensive characteristics of spectrum and the occupied signals to
meet strict requirements of spectrumefficiency. On the other hand,
the capability of self-learning and self-decision making under un-
known environmental is necessary for the future communication
systems or equipments to handle varied signal types, complex net-
works and cognitive tasks. Due to the innate constraints of frame-
work based on expert knowledge and predefined mathematical
models, traditional spectrum sensing methods cannot essentially
confront and solve these challenges. New methods of spectrum
sensing should be developed. One of the potential breakthrough
point is to make systems or equipments capable of learning to
spectrum sensing from data and signal. In this paper, we will try
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to build up a neural network with the core of learning to STFT in
maintaining time-frequency representations in spectrum sensing
applications.

As a matter of fact, many scholars have tried to incorporate
machine learning into cognitive communications. It is pointed out
that machine learning can solve some problems in large scale
MIMO, D2D network, heterogeneous network, cognitive radio and
so on [1]. The current results of related researches can be divided
into two categories. One applies neural network or shallow learn-
ing network (such as SVM, K-means) based classifiers on expert
features for recognition in different scenarios [2–6]. The other one
uses some mature deep learning models in natural language pro-
cessing or image processing to the cognitive communication fields
for feature extraction. There are quite few attempts to remodeling
learning networks based on the communication characteristics,
but basically applying shallow network based models to the prob-
lems encountered in communications.

Inspired by the works of Timothy J. O’Shea and other re-
searchers [7], in which they proposed a theory of learning to
communicate which re-modeled the transmission, reception and
synchronization of communication with framework of neural net-
work, this paper tries to build up a deep learning network that
learns to STFT in spectrum sensing. The learning network is ac-
tually a linear fitting of STFT with particular neural layers and
connections. The learning to STFT network, as a novel concept and
framework of spectrum sensing, is proved capable to cope with
various cognitive scenarioswith complex signal types and complex
networks. The feasibility of the proposed learning network for
deep spectrum sensing is verified by through the application on
modulation recognition tasks.

The rest of this paper is organized as follow. As the preliminary
ofmain contributions, Section 2 briefly reviews the time-frequency
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analysis methods and the short-time Fourier transform at first,
then typical layers in neural networks are reviewed. Section 3
proposes the network architecture of the learning to STFT network
and illustrates each operation layers respectively. The approach
and related issues for network training are also analyzed in this
section. In Section 4, as a test of proposed method in spectrum
sensing application, the problem of recognizing three basic types
of digital modulation signals are set up and simulated. The overall
performance of the network is analyzed from the aspects of classi-
fication accuracy.

2. Problem formulation

2.1. Limitation of traditional time-frequency analysis

Joint time-frequency transforms were developed for the pur-
pose of characterizing time-varying frequency contend of a signal
since one-dimensional solution is not sufficient in some cases.
Time-frequency analysis is a form of local Fourier analysis that
treats time and frequency simultaneously and symmetrically. The
well-known time-frequency representation of time signal dates
back to Gabor in 1993 [8], which is known as STFT and has been
extensively applied to signal analysis, communication theory, and
image processing, etc.

The basic idea, or the most standard approach of STFT is to
decompose the time-domain signal into many segments with a
window and then calculate the Fourier transform (or the frequency
spectrum) of each segment. Consider a discrete signal x ∈ RN and
a discrete sampled window function γ ∈ RM . To obtain a localized
spectrum of x at time n, the signal is decomposedwith thewindow
γ centered at time m = n and take the Fourier transform w.r.t m,
the STFT transform F (n, ω) then can be defined as

F (n, ω) =

∑
m

x(m)γ (m − n)e−jnω (1)

The magnitude squared of the STFT is called the spectrogram,
which provides time-localized frequency content of the trans-
formed signal. The spectrogram can be written as

S(n, ω) = |F (n, ω)|2 (2)

The fixed window size of STFT limits its ability to span both time
and frequency of unknown signals with resolution well matched
the signal characteristics [9]. A large window results in better
frequency resolution, but leads to worse time resolution, and vice
versa. When the frequency content of a signal or channel charac-
teristics change rapidly with time, a small time window is neces-
sary, but frequency resolution is degraded, while a large window
size may be sufficient when the frequency characteristics change
slowly. As for unknown characteristics, a few attempts of different
window sizes will be required to find ideal time and frequency
resolution.

Multi-resolution analysis (MRA), e.g. Wavelet transform, is an
improved method in case of the resolution limitation of STFT.
MRA analyzes the signal at different frequencies with different
resolutions by employing orthonormal filters consisting of low
pass filter and multiple band pass filters [10,11], and gives good
time resolution and poor frequency resolution at high frequencies,
or good frequency resolution and poor time resolution at low
frequencies. And many different conventional filters can be used
to implement it.

2.2. Feasibility of learning to STFT

This paper seek to build up a deep learning network to learn
STFT, which can automatically extract features of communication
signals, by referring to the processing procedures of STFT. Based
on this objective, we firstly decomposes the procedure of STFT
into three steps in brief: convolutes the signal with window func-
tion step by step, sub-samples the results with a stride of half of
window size, then normalizes the results. What follows is a brief
review of the similar operations in neural networks.

• Convolution: This is a basic operation in neural networks
such as CNN, convolution auto-encoder (CAE), convolutional
restricted Boltzmann machine (CRBM), etc. The visible val-
ues (v) are convoluted by a shared weights (W ) and biased
with a shared bias value bwithin a group that the raw values
of hidden units are W ∗ v + b. The number of hidden units
depends on the length of v and W and the convolution
mechanism (narrow or wide).

• Pooling: The three most commonly used pooling meth-
ods are general pooling (e.g. mean pooling, max pooling),
overlapping pooling [12] and spatial pyramid pooling [13].
Regardless of the specific meaning of these methods, one
of their most fundamental effects is the sub-sampling of
signals. Pooling layer hence is also called as sub-sampling
layer sometimes.

• Normalization: The normalization of deep learning is re-
flected in two aspects. First, the normalization of the input
values, where the range of input data will effect the ini-
tialization of parameters. Second, the normalization of the
output values, where too big value will bring a numerical
problem to the update of gradients and the setting of initial
learning rate.

According to hereinbefore reviews, it is feasible to build up a
neural network which learns the process of STFT with convolu-
tional layer, sub-sampling layer and normalization layer.

3. Learning to STFT

An illustration of the designed network architecture is shown
in Fig. 1. The original input are real-valued 2 × Nv vectors, layer
‘‘Conv1’’ contains K1 one-dimensional filters of length Nw . Raw
convolutional results of each group, sized at 1× (Nv −Nw + 1), are
feed into sub-sampling layer that elements for every Nw/2 steps
will be kept in the output for each group. Output vectors of each
group are combined as a matrix (image) sized K1 × Nv2 (Nv2 =

⌈2(Nv − Nw + 1)/Nw⌉). Layer ‘‘Conv2’’ is identical to Conv1, but
contains K2 filters with K1 channels, in other words, the filters in
Conv2 are matrices sized at K1 ×Nw2. A simple summary statistics,
e.g mean, is used for each channel over all the frames (that is the
max-pooled Conv2-layer activations) and achieves a 1×K2 feature
vector for each signals.

3.1. Convolutional layer

The Conv1 layer and Conv2 layer are both CRBMpractically. The
CRBM is an extension of RBM [14] to a convolutional setting, in
which the weights between the hidden units and the visible units
are shared among all locations in the hidden layer. The learning
to STFT network is supposed to be separated from deeper feature
extraction networks, as a result, CRBM is chosen since they are
trained separately.

The major difference between Conv1 and Conv2 is the input
channel size, where Conv1 has a channel of 2, which is determined
by the two-channels real-valued time-series input data, while
Conv2 has a channel size that equals to the number of filters in
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