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a  b  s  t  r  a  c  t

This contribution  proposes  a new  active  learning  strategy  for smart  soft  sensor  development.  The  main
objective  of  the smart  soft  sensor  is to opportunely  collect  labeled  data  samples  in  such  a  way  as to
minimize  the  error  of  the  regression  process  while  minimizing  the  number  of  labeled  samples  used,  and
thus  to reduce  the costs  related  to labeling  training  samples.  Instead  of randomly  labeling  data  samples,
the  smart  soft  sensor  only  labels  those  data  samples  which  can  provide  the  most  significant  information
for  construction  of  the soft  sensor.  In this  paper,  without  loss  of  generality,  the smart  soft  sensor  is
built  based  on  the  widely  used  principal  component  regression  model.  For  performance  evaluation,  an
industrial  case  study  is provided.  Compared  to  the  random  sample  labeling  strategy,  both  accuracy  and
stability  have  been  improved  by  the active  learning  strategy  based  smart  soft  sensor.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

For prediction of key variables in the process industry, e.g.
quality-related variables, various soft sensing (virtual measure-
ment) methods have been developed, including first-principle
model-based and data-based soft sensors [1–16]. Compared to
those which mainly based on the knowledge of the process, the
data-based soft sensing methods have been used more widely,
thanks to the easy measurement and acquirement of data from
industrial processes. While most process variables can be easily
obtained by the distributed control system, some other variables
are difficult to measure online, which are often related to the prod-
uct quality, key process conditions, etc. The data-based soft sensor
tries to build a regression model between difficult-to-measure vari-
ables and easy-to-measure variables. In the present paper, the
difficult-to-measure variables are referred to key or quality vari-
ables and the easy-to-measure variables are referred to secondary
process variables.

Conventionally, in order to build a data-based soft sensor for
online prediction of the key variables in the process, the values of
key variables in the training dataset should be determined manu-
ally, e.g. human expert, laboratory analysis, and so on. As a result,
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significant efforts will be incorporated to perform the labeling task
of the key variables, which are time-consuming and costly in terms
of human resource and money. Therefore, in practice, we  may
only have a limited number of labeled data samples and hold a
large number of unlabeled data samples. If only those labeled data
samples are used for construction of the soft sensing model, the
performance of the model may not be guaranteed, which leads to
poor estimation/prediction accuracy for online new data samples.

The motivation of this paper is to get use of the unlabeled data
samples, or precisely, try to minimize the number of unlabeled data
samples to be labeled by human efforts. From a modeling view, it
starts from a small number of training data samples, then additional
samples are selected properly from a large amount of unla-
beled dataset. During this process, selecting the most significant
unlabeled samples which consist of additional data information
becomes particularly important. Therefore, if those selected data
samples are labeled, the performance of the soft sensor model could
be mostly improved. In this paper, this modeling process is termed
as the active learning strategy. With the incorporation of the active
learning strategy, lots of human efforts can be saved for construc-
tion of the soft sensor, while the prediction performance keeps
high.

Despite the importance of this modeling problem for soft sens-
ing in practice, it has rarely been researched to date. In this paper,
without loss of generality, the active learning strategy is intro-
duced and incorporated with the widely used principal component
regression model for soft sensing of key variables in the process
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industry. However, this new soft sensor modeling idea has no lim-
itation on the structure of the data model, which means it can be
easily extended to other soft sensor modeling methods, such as
Neural Network and SVMs. The first step of the new active learning
PCR (ALPCR) method is to build a PCR model for the initial labeled
data samples. Then, new data samples are selected from the unla-
beled dataset, which will be labeled for the next learning step. The
iterative learning process can be controlled by defining a stop cri-
terion which is usually based on the converge speed of the learning
process. In the ALPCR method, the most important issue is how to
determine the selected data samples for labeling in the next step. In
this paper, we intend to select the most significant unlabeled data
samples based on the feature space of the previous PCR model. By
constructing an effective selection statistic, the significance of each
unlabeled data sample can be evaluated and arranged in an descend
order, based on which a number of most significant unlabeled data
samples are picked out for labeling, and then added to the training
dataset for the next learning step.

The rest of this paper is organized as follows. In Section 2,
detailed methodology of the new active learning strategy based
PCR model is demonstrated for soft sensor development, followed
by an industrial case study in the next section. Finally, conclusions
are made.

2. Methodology

In the present paper, it is assumed that we  only have a very
limited number of labeled training data samples for modeling.
Meanwhile, the industrial process has collected a large amount of
unlabeled data samples. The aim of the active learning PCR model
is to select some appropriate data samples for labeling, in order to
improve the performance of the soft sensor. Simultaneously, due
to expensive costs and significant efforts that may  be caused for
data sample labeling, keeping a low number of training samples is
important to the industrial process. Here, the principal component
regression model is used as the example for active learning of the
data-based soft sensing method. However, the idea can be extended
to other soft sensing methods, such as partial least squares, inde-
pendent component regression, artificial neural networks, etc.

Given the labeled and unlabeled datasets as {XL} ∈ Rnl×m and
{XU } ∈ Rnu×m, where nl and nu are numbers of labeled and unla-
beled data samples, usually nl � nu holds, and m is the number of
process variables. Suppose the dataset of the quality variables is
given as {YL} ∈ Rnl×r , where r is the number of quality variables. For
soft sensing purpose, conventionally, the PCR model is constructed
between datasets {XL} ∈ Rnl×m and {YL} ∈ Rnl×r , given as follows [8]

XL = TLPT
L + EL (1)

YL = TLCT
L + FL (2)

where PL ∈ Rm×k is the loading matrix of the PCR model, TL ∈ Rnl×k

is the principal component matrix, k is the selected number of
principal components, which can be determined by the cumula-
tive percentage variance (CPV) method, CL ∈ Rl×k is the regression
matrix corresponding to the quality variable matrix and the prin-
cipal component matrix, EL and FL are the residuals matrices of XL

and YL with appropriate dimensions. Due to the small number of
training data samples, the modeling and regression performance of
the PCR model may  not be well guaranteed. To this end, the active
learning strategy is incorporated into the PCR model, in order to
boost its performance by labeling an appropriate number of unla-
beled data samples which contain additional information and can
provide a compensation effect to the original PCR model.

Based on the feature of PCR model, the whole process variable
space can be divided into two subspaces, termed as princi-
pal component subspace (PCS) and residual subspace (RS). A

statistic for measuring the distance between the data samples and
the modeling space can be constructed in each of the two subspaces,
respectively. In the principal component subspace, the distance
between a new data sample xu ∈ {Xu} and the model space can be
measured by the Mahalanobis distance, thus

T2
u = tT

u�−1tu (3)

where tu = PT
L xu is the extracted principal component of the new

data sample and � is a diagonal matrix whose elements are the
eigenvalues of the PCR model. Therefore, if a data sample stays
inside of the PCR model, its T2 statistic keeps as a low value, oth-
erwise, it should be a big T2 value in the principal component
subspace. Compared to the data samples which stay inside of the
PCR model, those which stay far away of the PCR model or have
relatively big T2 statistic values can provide more additional infor-
mation for soft sensor modeling. Hence, we should set a higher
priority for selection of these far away unlabeled data samples in
the next learning procedure.

Similarly, in the residual subspace of the PCR model, another
statistic can be constructed for measuring the distance between
the new data samples and the PCR model, given as follows

eu = xu − PPT xu

SPEu = eT
ueu

(4)

where eu is the residual information of the new data sample. There-
fore, if the residual of an unlabeled data sample is small, we can
say that this data sample follows the PCR model, thus little addi-
tional information can be provided. On the other hand, if another
unlabeled data sample shows a significant residual value, it means
that this data sample may  stay outside of the modeling space of
the PCR model, thus could provide additional information if it is
incorporated for modeling.

A confidence limit for each of the T2 and SPE statistics can be
determined as follows [17]

T2
lim = k(n − 1)

n − k
Fk,(n−k),˛

SPElim = g�2
h,˛

(5)

where k is the number of PCs,  ̨ is significance level,
g = var(SPE)/[2mean(SPE)] and h = 2[mean(SPE)]2/var(SPE);
mean(SPE) and var(SPE) are mean and variance values of SPE
for the training dataset. Based on these two confidence limits, a
combined unlabeled data sample evaluation index can be defined
as follows

Qu =
√

e−T2
u /T2

lim +
√

e−SPEu/SPElim

2
(6)

Based on this definition, it can be easily inferred that the value of
the Q index is between zero and one. When the value approaches
to one, it means the corresponding data sample has a high credit to
stay inside of the previous PCR model space. Otherwise, if the credit
value is very small, it means that the corresponding unlabeled sam-
ple has probably violated the PCR model, and thus should be treated
as a high priority sample to be selected for the next modeling step.
Based on the confidence limit of the T2 and SPE statistics, a cor-
responding limit of the evaluation index Q can also be defined as
follows

Qlim =
√

e−1 +
√

e−1

2
= 0.6065 (7)

In practice, there are two sample selection strategies, one is to
use a fixed number in each active learning step, the other one is
to determine cut-off value of the Q index. While the determina-
tion of the cut-off value varies from process to process, it is much
easier to set a fixed number of unlabeled data samples which have
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