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a b s t r a c t

The evolution of source noises in space–time is analysed in this paper. It characterises the global effect
of uncertainties in electrodeposition process control, where the source noises have an effect on the
concentration field of relevant species in the diffusion layer and the field is controlled by the Neumann
boundary using relatively simple boundary controls. The control errors evolve in the diffusion layer and
are dependent upon the source noises and applied controls as a random field process. The covariance
structure of the field is found analytically and confirmed numerically. The local source noises are incited
by the uncertainties from a realistic control system; they are devised by the process physics and a control
system structure. This paper demonstrates that even in a relatively simple system, the local uncertainties
have a strong tendency to expand in space–time. Some source noises have a dispersed effect on the overall
system uncertainty (control error), others are more local and do not expand in the same way. The noise of
the mass flux, which is injected through the Neumann boundary, dies out quickly in the diffusion layer.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to a lack of complete knowledge about mass transfer and
surface reactions as well as incomplete observations pertaining
to electrodeposition process control, a stochastic model should be
applied. Such a model has been developed by Tenno [1] based on his
analysis of the uncertainties in electrodeposition process control.
This process has five categories of uncertainties modelled as source-
noises in the single dimensional domain (diffusion layer) and on the
boundaries (one end: cathode, other: bulk solution). While exist-
ence of the local source noises can be understood based on process
physics and implementation, their global effect on the concentra-
tion field is mostly unknown. The spatial effect of local noises is
widespread. The overall effect of all categories of noises on the con-
centration field of relevant species in the diffusion layer is a rather
complex stochastic evolution process in space–time. The purpose of
this paper is to isolate a particular effect of each source noise on the
concentration field that characterises the overall effect of uncer-
tainties on the control system. The process is controlled through
one boundary by adjusting the electric current flow through the
cathode. A control error arising during the electrodeposition pro-
cess expands in space–time and is dependent upon the local source
noises and boundary controls that are applied.

In this paper, the covariance structure of system noises will
be derived using several steps and then verified numerically.
The idea of numerical analysis is simple. The stochastic system
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will be compared with the corresponding noise-free system; the
difference between them will reveal the effect of noise on the
concentration field in space–time. The main statistics can then be
evaluated spatially and temporarily by the field differences, which
are dependent upon the applied source noises (case by case) and
boundary controls. Deriving the covariance structure is more of a
laborious process. At first, the noise-free system with relatively
simple boundary controls will be solved analytically. These feed-
back controls can be represented in the feed-forward controls using
an analytical solution for the system on the boundary. The feed-
forward controls turn out to be a smooth enough function for the
next step, which involves homogenising the stochastic system on
the boundary. In addition to the feed-forward control, a stochas-
tic modification of the noises is used to homogenise the system,
which will eventually represent a Gaussian process. The solution
for the homogenised system is expressed through the variation of
constants formula as a mild solution using a Green’s function in
an explicit form. Ultimately, the spatial covariance and temporal
covariance will be derived on the basis of the mild solution. The
mean value of the concentration field coincides with the noise-free
(deterministic) field.

In general theory, a covariance trace is analysed instead of the
covariance function for a field. This theory deals with Ito’s differ-
entiation rule and the Kolmogorov equation in infinite dimensions.
The function for a change of variable using Ito’s formula and the
initial function in the Kolmogorov equation are assumed to be an
integral-type bounded function that maps a Hilbert space onto a
one-dimensional Euclidian space. In this application-limiting con-
dition, a covariance trace can be derived from Ito’s formula in
infinite dimensions [2] as an integro-differential equation that can
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be further simplified with respect to the noise-related terms since
a finite number of Wiener processes are applied in our model.
Although the covariance trace can be found as a formal solution
to a certain operator equation, its properties are still unknown. In
a more general sense, they have been investigated as part of a gen-
eral theory dealing with the infinite dimensional processes induced
by a cylindrical Wiener process [3–5]. In the latter case, the covari-
ance trace can be found based on a probability density that satisfies
a Fokker–Plank equation, or, in a more general sense, satisfies a
Kolmogorov equation in infinite dimensions (e.g. [5–7] and the
references therein). Both these equations have been comprehen-
sively analysed, especially in finite dimensions [8], and, somewhat
less often, in infinite dimensions, and the existence and unique-
ness of the variational solution as well as the mild solution have
been verified. There is a vast literature on the processes considered
in the entire space (e.g. [5,7] and the references therein). Similar
results for a bounded domain with homogeneous Dirichlet bound-
ary conditions have been proposed in other studies (e.g. [9]), but
such results are lacking in more practical cases for an inhomoge-
neous mixed noise boundary and for the controls exercised through
the boundary, like those considered in this paper. Although our
finite-dimensional Wiener process induces more regular behaviour
during process evolution than a cylindrical Wiener process, the
benefit of simpler noises is not stressed in the literature. In this
light, the result presented by Krylov [10] is encouraging. He was
able to show that a Kolmogorov equation with finitely many state
variables can be solved in the less limiting condition of polyno-
mial growth that is applied to the initial function. However, the
theory in general is not so encouraging. Techniques for solving the
stochastic evolutionary equations with functional derivatives were
for the most part not present in the existing literature. In contrast
to the general theory, a more pragmatic approach is taken in this
paper, one that deals with the covariance structure of a random field
instead of the covariance trace considered in the existing literature.

2. Stochastic system for electrodeposition process control

A stochastic model that reflects the electrodeposition process
uncertainties has been proposed by Tenno [1]. This model explains
deposition as a diffusion process with stochastic noises in a one-
dimensional diffusion layer when the process flux is measured and
controlled on one end of the boundary and the bulk solution con-
centration level is fixed on the other end. All the processes in the
domain interior and on the boundaries are corrupted by local source
noises. Since this model has been described elsewhere [1], here it
is summarised briefly in Sections 2.1 and 2.2 and then applied to
the noise effect (control error) analysis throughout the rest part of
the paper.

2.1. The system model

Assume that a consumption reaction of the relevant species
takes place on a solid surface (a = 0) and that its mass transfer in
a finite interval (domain), ˝ = (a ≤ x ≤ b), is dominated by diffusion.
In a real case scenario, a number of different types of uncertain-
ties affect the process, and hence, a stochastic model is applied. In
this model, the concentration of species is given by the stochastic
diffusion equation:

dc = Ac(t, x)dt + �(x)dW(t). (1)

In Eq. (1), c(t,x) is the concentration (mol/m3) of the relevant
species, A is the linear operator, Ac = D0cxx + k0cx + krc, which gener-
ates a strongly continuous semi-group that satisfies the coercivity
and other standard assumptions, D0 > 0, k0 ≤ 0, kk ≤ 0, that appear
in the natural condition for the electrodeposition process, D0 is the
diffusivity (m2/s) of species and �(x)dW(t) is a process noise. The

initial condition for this system is that the concentration is initially
on a bulk level: c(0, x) = cbulk. Once t > 0, the mixed boundary data
are given as a Neumann condition,

D0cx(t, a) = u(t) + �a
0Ẇa(t), (2)

on boundary a (cathode) and as a Dirichlet condition,

c(t, b) = cbulk + �b
0Ẇb(t), (3)

on boundary b (bulk end). Both these boundaries are corrupted with
generalised white noises, Ẇa(t), Ẇb(t), with the given intensities
�a

0, �b
0. Furthermore, in Eq. (2) u(t) denotes our control variable,

which is also the mass flux (mol/m2/s) related to the reaction of
the consumed species; in other units it represents the growth rate
(m/s) of deposit. This is important to notice (in a stochastic context)
because we can control and measure the rate that exists as a phys-
ical parameter. In practical systems, u(t) = F−1

z i(t) is manipulated
by adjusting a current density, i(t). Fz denotes a given coefficient,
F−1

z = zF , where z is the electron number of the consumed species
and F is Faraday’s constant, 96487C/mol.

From a system point of view, the concentration of species is
known, c(t, b) = cbulk, only on the outer boundary, b, of the diffusion
layer – elsewhere it is not observed, including on the controlled
boundary, c(t,a), i.e. at the electrode surface. As mentioned above,
the current related to the consumption reaction can be measured,
but this only yields the mass flux over the boundary, and therefore,
it does not indicate the concentration level there.

In practice, we measured a current density that had been cor-
rupted by unmodelled side reactions, modelled here as a white
noise, �a

0Ẇa(t), as well as a sensor noise:

D0�̇(t) = u(t) + �a
0Ẇa(t) + rV̇(t). (4)

The sensor noise, rV̇(t), is a generalised white noise with inten-
sity r. The above-mentioned white noise terms on the boundaries,
�a

0Ẇa(t), �b
0Ẇb(t), rV̇(t), which can be written in a differential form,

�a
0dWa(t), and integrated over time, gain their exact meaning as

Ito’s integrals.
The domain noise. Due to the structure of the deposition process

uncertainties, the domain noise, �(x)dW(t), can be decomposed in
the boundary-related �a(x), �b(x) components and domain-related
�d(x) component as follows:

�(x) =
√

(�a(x))2 + (�b(x))2 + (�d(x))2
. (5)

The domain noise is finite dimensional and is represented as a
weighted sum of one-dimensional Wiener processes:

�(x)dW(t) =
N∑

i=1

�i�(xi)dWi(t). (6)

Here, the noise, Wi(t), is applied point-wise in each point (xi,
i = 1, ..., N) of the partition for the interval (a, b): Wi(t) is standard
Wiener process and �(xi) is the noise intensity or a weight function
that characterises the standard deviation of constant noise in the
interval (xi−1, xi]: this function is approximated as the step function,
�i = �(xi)�i, which uses the weight coefficients, �(xi), and indica-
tor functions, �i = 1(xi−1,xi](x). Similar to Eq. (5), the weights, �i,
consist of three components, each of which is proportional to the
coefficient �k:

�a
i = �aG(a, sa)(xi), �b

i = �bG(b, sb)(xi), �d
i = �dG(b, sd)(xi) (7)

and Gaussian kernel, G(k, s)(x) = (2/s
√

2�)e−((x−k)2/2s2). In Eq. (7),
the coefficient �k scales the overall weight of the noises based on
their types, k = a, b, d, and sk causes the weight function, �k, to
become concentrated at either boundary, k = a or b. According to
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