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a b s t r a c t

An appropriate control configuration selection is identified as one of the key prerequisites for attaining
the control objectives in industrial practices. To select a suitable control configuration, it is important
to determine which variables should be measured and how the process should be actuated. Therefore,
the first step is to determine the optimal locations for the sensors and actuators. For the multivariable
processes, this step is followed by choosing the appropriate input and output pairs for the design of SISO
(or block) controllers. This is due to the popularity of the distributed and decentralized control in industrial
control systems. These issues, which have been studied extensively for deterministic systems, have not
been closely studied for stochastic systems. In this paper however the problem of control configuration
selection is studied for the linear stochastic systems. The problem of selecting the sensor locations for
stochastic systems is viewed as the problem of maximizing the output energy generated by a given
state and for the actuator locations is viewed as the problem of minimizing the input energy required to
reach a given state. Furthermore, a gramian-based interaction measure for control structure selection of
multivariable stochastic systems is proposed. This interaction measure can be used to propose a richer
(sparse or block diagonal) controller structure for distributed and partially decentralized control.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the ever increasing complexity of the process plants and
manufacturing processes, the objectives of process control strate-
gies cannot be attained unless a suitable control configuration is
selected. To select an appropriate control configuration, it is impor-
tant to determine which variables should be measured and how the
process should be actuated. Therefore, the first step is to determine
the optimal locations for the sensors and actuators. This makes pro-
viding the accurate and reliable process measurements and suitable
actuations possible for the control purposes. For the multivariable
processes, this step is followed by choosing the appropriate input
and output pairs for the design of SISO (or block) controllers. This is
due to the popularity of the distributed and decentralized control in
industrial control systems. The reason for this popularity is that the
centralized control of large-scale complex systems are expensive
and difficult, due to the computational complexity, the problems
related to reliability and the limitations in communications. On the
other hand, decentralized controllers are easy to understand for
operators, easy to implement and to re-tune [1,2].

In this paper both key issues in control configuration selection
are addressed. These two key issues have been studied extensively
for deterministic systems. For the placement of the sensors and the
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actuators, several techniques have been proposed over the last few
decades. These techniques take into account different performance
criteria [3–9]. One of the most reliable criterion for determining
sensor and actuator locations is the improvement of state control-
lability and observability of the process [3]. In these methods, the
problem of determining the sensor locations is viewed as the prob-
lem of maximizing the output energy generated by a given state.
The problem for the actuator locations is viewed as the problem
of minimizing the input energy required to reach a given state.
In [4–6], several gramian-based methods from this category for
optimal placement of the sensors and the actuators have been pro-
posed. These methods have been improved and have been extended
to unstable systems in [9] and further to nonlinear systems in [7,8].

The second key issue of control configuration selection which is
input–output pairing or the controller structure selection, has also
been studied extensively for multivariable deterministic systems.
The results in this context are based on different interaction mea-
sures. Interaction measures make it possible to study input–output
interactions and to partition a process into subsystems in order to
reduce the coupling, to facilitate the control and to achieve a satis-
factory performance. There are two broad categories of interaction
measures in the literature. The first category is the relative gain
array (RGA) and its related indices [10–16] and the second category
is the family of the gramian-based interaction measures [17–26].

The relative gain array (RGA) is the most well-known interac-
tion measure. It was first proposed in [10]. RGA uses d.c. gain of
the process to quantify the channel interactions. The RGA can also
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be computed for a particular frequency other than zero. However,
RGA is not sensitive to delays. The RGA has been studied by sev-
eral other researchers (see, e.g. [11,12]). There are also other similar
measures of interaction, which use dc gain of the process e. g. the NI
(the Niederlinski index) [13]. The second category of the interaction
measures is the family of the gramian based methods. A method
from this category was first proposed in [17] and further in [18].
In this category, the observability and the controllability gramians
are used to form the Participation Matrix (PM). The elements of
the PM encode the information on the channel interactions. PM is
used for pairing and the controller structure selection. The Han-
kel Interaction Index Array (HIIA) is a similar interaction measure,
which was proposed in [19]. The gramian-based interaction mea-
sures have several advantages over the interaction measures in the
RGA category. The gramian-based interaction measures take the
whole frequency range or a bounded interval of frequency into
account rather than a single frequency. This family of the inter-
action measures suggests more suitable pairing and allows more
complicated controller structures. For more details on the appli-
cations and the differences between two main categories of the
interaction measures, see [20,21].

It is apparent from the presented literature survey that these
two important issues of control configuration selection, which have
been studied extensively for deterministic systems, have not been
closely studied for stochastic systems. In this paper however these
key issues of control configuration selection are studied for the
linear stochastic systems. The problem of selecting the sensor loca-
tions for stochastic systems is viewed as the problem of maximizing
the output energy generated by a given state and for the actuator
locations is viewed as the problem of minimizing the input energy
required to reach a given state. Furthermore, a gramian-based
interaction measure for control structure selection of multivari-
able stochastic systems is proposed. This interaction measure can
be used to propose a richer sparse or block diagonal controller
structure for distributed and partially decentralized control.

The paper is organized as follows. In Section 2, we intro-
duce gramians for stochastic systems. The generalized Lyapunov
equations and their solvability conditions and their energy inter-
pretations are also discussed in this section. Section 3 presents the
main results of the paper. This sections addresses both key issues
of control configuration selection for stochastic systems. The meth-
ods are further illustrated with the help of a numerical example
in Section 4 and the results are discussed. Finally, the last section
concludes the paper.

The notation used in this paper is as follows: M* denotes trans-
pose of matrix if M ∈ Rn×m and complex conjugate transpose if
M ∈ Cn×m. The Moore–Penrose-inverse of M is denoted by M#. The
⊗ stands for the Kronecker Product. Struc(˘) =

[
�ij
]
p×p shows the

structure of ˘ which is a symbolic array where � =*, if there exist
a subsystem in ˘ with input uj and output yi. Otherwise: � = 0.
The standard notation >, ≥ (< , ≤) is used to denote the positive
(negative) definite and semidefinite ordering of matrices.

2. Gramians and energy functionals for linear stochastic
systems

The gramians are matrices with the embedded controllability
and observability information. The controllability and observabil-
ity gramians were first introduced in [27,28] for linear deterministic
systems and more recently in [29]. It is well-known that the con-
trollability gramian shows the level of controllability. Similarly, the
observability gramian contains information of the level of observ-
ability for a system. The gramians have been largely used in the
process of model reduction [29–32].

Let ˙ be a stochastic linear control system of Itô-type [32,33],
which is described by:

˙ :

⎧⎪⎨
⎪⎩
dx = Ax dt +

N∑
j=1

Ajxdωj + Budt

y = Cx
(1)

Theωj =ωj(t) are independent zero mean real Wiener processes
on the probability space (˝,F,�) with respect to an increasing
family (Ft)t∈R+ of �-algebras Ft ⊂ F.

Let L2
ω(R+,Rq) denote the corresponding space of non-

anticipating stochastic processes � with value in Rq and norm:

∥∥�(.)
∥∥2

L2
ω

:= E
(∫ ∞

0

∥∥�(t)
∥∥2
dt

)
<∞ (2)

where E denotes expectation. We assume that the homogeneous
equation:

dx = Ax dt +
N∑
j=1

Ajxdωj (3)

is mean-square stable for all initial conditions x(0) = x0. Let ˚ be
the fundamental solution for this equation, such that: x(t) =˚(t,
0)x0. In general, stochastic differential equations can only be solved
forward in time ˚(t, �) is only defined for t ≥ �. From the time-
invariance property, we have: ˚(t, �) =˚(t − �, 0). For simplicity
we write:˚(t) =˚(t, 0), where t ≥ 0.

For the stochastic system (1), the controllability gramian P and
the observability gramian Q are defined as [32]:

P := E
(∫ ∞

0

˚(t)BB∗˚(t)∗dt

)
(4)

Q := E
(∫ ∞

0

˚(t)∗C∗C˚(t)dt

)
(5)

These gramians are the solutions of the following generalized
Lyapunov equations:

AP + PA∗ +
N∑
j=1

AjPA
∗
j + BB∗ = 0 (6)

A∗Q + QA+
N∑
j=1

A∗
j QAj + C∗C = 0 (7)

For a given x0 ∈ Rn, the minimal energy of an input u can be
determined such that E(x(T,0, u)) = x0 for some T > 0. Dually, the
output energy produced by x0 can be determined. The related
energy functionals are:

Ec(x0) = inf
u ∈ L2

ω[0, T], T > 0

(T, x0, u) = 0

E
(∫ T

0

‖u(t)‖2dt

)
(8)

Eo(x0) = E
(∫ ∞

0

∥∥y(t, x0, 0)
∥∥2
dt

)
(9)

In the sequel, the relation between gramians of the stochastic
systems and the energy functionals are described.

Theorem 1. [32]: Consider the controllability gramian P and the
observability gramian Q which are defined in (6) and (7) for the
stochastic system (1).



Download English Version:

https://daneshyari.com/en/article/688975

Download Persian Version:

https://daneshyari.com/article/688975

Daneshyari.com

https://daneshyari.com/en/article/688975
https://daneshyari.com/article/688975
https://daneshyari.com

