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a b s t r a c t

The intuitive and simple ideas that support model predictive control (MPC) along with its capabilities
have been the key to its success both in industry and academia. The contribution this paper makes is to
further enhance the capabilities of MPC by easing its application to industrial batch processes. Specifically,
this paper addresses the problem of ensuring the validity of predictions when applying MPC to such
processes. Validity of predictions can be ensured by constraining the decision space of the MPC problem.
The performance of the MPC control strategy relies on the ability of the model to predict the behaviour
of the process. Using the model in the region in which it is valid improves the resulting performance.
In the proposed approach four validity indicators on predictions are defined: two of them consider all
the variables in the model, and the other two consider the degrees of freedom of the controller. The
validity indicators are defined from the latent variable model of the process. Further to this, these are
incorporated as constraints in the MPC optimization problem to bound the decision space and ensure
the proper use of the model. Finally, the MPC cost function is modified to enable fine case-specific tuning
if desired. Provided the indicators are quadratic, the controller yields a quadratic constrained quadratic
programming problem for which efficient solvers are commercially available. A fed-batch fermentation
example shows how MPC ensuring validity of predictions improves performance and eases tuning of the
controller. The target in the example provided is end-point control accounting for variations in the initial
measurable conditions of the batch.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Batch and fed-batch1 processes have widespread applications in
chemical and life science industries for the production of products
with high added value (e.g. medicines, enzymes, high-performance
polymers). The primary control objective in batch processes is to
reach a specified product quality at the point of batch termination.
Accurately controlling the final quality of a batch process is chal-
lenging in that physical measurements of the quality parameters
that can be used to predict the final quality are often not avail-
able on-line [1,2]. Data-driven models provide an answer to this
problem and are widely used for process monitoring [3–5]. The
common approach to control the quality of a batch process is end-
point based MPC [6]. In end-point based MPC the control sequence
from the current point until the end of the batch is determined such
that product quality at the end of the batch reaches a desired value.
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Depending on the strategy used, the trajectory is either determined
at the start of the batch and on-line local controllers are used to
track the trajectory (batch-to-batch) [7–10]; or the MPC problem
is solved at each decision point within the batch and applied in a
receding horizon policy (within-batch) [11,12]. The former is eas-
ier to deploy, whereas the later may be less affected by process
noise and disturbances. Intermediate solutions can also be defined
in which the period to recalculate the MPC trajectory is larger than
that used in local controllers that track the calculated trajectory
[13]. All these strategies have the commonality of solving an MPC
problem, either off-line or on-line. The MPC problem calculates the
control trajectory from the calculation instant to the end of the
batch, using a model of the process. For the control results to be suc-
cessful, the model should approximate the behavior of the process
to an acceptable level, which for any non-linear process requires it
to be used in the region in which it is valid. An important source
of variability in predictions is the initial state, e.g. variability in the
raw material. Consequently all measurable variables available at
the decision points should be considered for inclusion in the model
so that the accuracy of the predictions can be improved. All end-
point MPC optimization techniques need to overcome the following
challenges to ensure high quality control is achieved:
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(I) Cope with disturbances: unmeasured variables that affect
quality, or changes in measurable variables after the decision
point, e.g. feed property change.

(II) Cope with faults: Measurement errors or faults in actuators or
sensors.

(III) Acceptable computational complexity: Make sure the time
needed to solve the MPC problem is smaller than the available
time.

(IV) Account for process-model mismatch: The model used in MPC
is an approximation of the real process, hence the model
should be used in a region in which it is known to be valid.

There are two approaches to cope with disturbances, challenge
(I). One approach is to recompute the trajectory of the manipu-
lated variables (MVs) to account for the disturbance using a moving
horizon MPC strategy [12]. Another approach is to improve the
predictor to actually account for the disturbance, e.g. by using
batch-to-batch iterative learning control (ILC). In [10], an ILC
approach based on moving window re-identification is proposed.
There are also approaches that combine both, ILC and moving hori-
zon MPC [14,15].

There are two approaches to cope with faults, challenge (II).
In the active approach the fault is detected and actions are
taken mainly by controller reconfiguration [16,17]. In the pas-
sive approach the end-point-based MPC formulation explicitly
accounts for model uncertainty. One solution is to use min-max
based robust MPC in which the goal is to maximize the perfor-
mance of the MPC by minimizing the worst-case tracking error
(the largest difference between the prediction and the actual mea-
surement). However, according to [18], these approaches are often
computationally prohibitive. Alternatively, [18] proposes a robust
reverse-time reachability region based MPC approach to ensure
states can be driven inside a desired end-point neighborhood if the
fault is repaired sufficiently fast.

There are two branches of solutions to attain an acceptable
computational complexity, challenge (III). One branch of solutions
increases the available time for computation. This can be achieved
for batch processes by either solving the MPC at the beginning of
the batch in a batch-to-batch optimization policy, or by reducing
the number of decision points during the batch to recompute the
trajectory [19]. The other branch of solutions is trying to solve the
problem faster. The common approach to solving the cost func-
tion faster is to use a linear or set of linear models instead of a
non-linear model [20,21], or use a linear MPC controller over an
input-output feedback linearized process [22]. Additionally, it is
common practice to reduce the d.o.f. (degrees of freedom) to reduce
computation time. Move blocking strategies reduce the d.o.f. by
fixing the input or its derivatives to be constant over several time-
steps. A survey of various move blocking strategies is presented in
[23]. An alternative approach is to use Laguerre functions to approx-
imate the control sequence in a large control window, but using a
reduced number of d.o.f. [24]. Another solution is to reduce com-
plexity by using latent variable methods in the identification stage
and perform the minimization in the space of the latent variables
[11,25].

This paper focuses on challenge (IV), accounting for process-
model mismatch. The different approaches to account for process-
model mismatch include:

• Minimize process-model mismatch. A more complex model or an
adaptive approximation can be used to minimize process-model
mismatch.

• Weight changes on the control sequence from the nominal trajec-
tory in the MPC cost function by means of �u. This is the simplest
and most common approach in which �u is a design parameter
that weights the control effort. Small values of �u give freedom to

the controller to propose control trajectories far from the nominal
conditions, which assuming the model is a linear approximation
of the process around a fixed trajectory, can lead to poor predic-
tions and reduced control performance. Large values of �u provide
biased control as the deviation from the target term in the MPC
cost function loses importance versus the movement suppression
term. The most common solution is to tune �u by trial and error
until the desired performance is obtained.

• Robust MPC: model uncertainty is considered in the MPC cost
function and solved using a min–max optimization problem.
Robust MPC is case dependent and can be challenging to apply
it successfully [26]. In [18] a reverse-time reachability region
based non-linear MPC for batch processes is presented to cope
with model uncertainty. The disadvantage in robust approaches
is computational complexity.

• Constrain the MPC problem to ensure the model is used in the
region in which it is valid. Receding horizon MPC with hard valid-
ity constraints has been defined for continuous processes in [27],
and for quality by design in [28–30]. In [31], validity indicators
are weighted in the MPC cost function for batch processes, but
they are not set as hard constraints. This paper is an extension
of previous work of the authors [27] that implements hard valid-
ity constraints for batch processes. The novelty in this paper is it
defines a systematic approach for inclusion of validity constraints
that ensures feasibility. The validity indicators are included as
two hard constraints and two hard constraints relaxed with slack
variables to ensure feasibility. Additionally, the validity indica-
tors are weighted in the cost function to enable further optional
fine tuning of the controller.

Summing up, this paper formulates an MPC framework for batch
processes that ensures validity of predictions by constraining the
decision space. The performance of the MPC control strategy relies
on the ability of the model to predict the behavior of the process.
Hence, using the model only in the region in which it is valid, will
improve the resulting control performance. The novelty proposed
in this paper is the methodology that is used to implement hard
and softened constraints to ensure the validity of predictions. The
controller proposed in this paper could be formulated in the latent
variable space as in [27], where the same control results would be
obtained, but with reduced computational complexity. However,
in this paper it is assumed that the computational complexity of
the optimization problem is acceptable and the controller is for-
mulated in the original space of the MVs for the sake of readability.
Both the model and the validity indicators are obtained in the latent
variable space and then formulated in the original space of the MVs
to be included in the controller. Although the solution proposed in
this paper focuses on challenge (IV), current solutions for the other
three challenges presented could be combined with the methodol-
ogy proposed in this paper to cope with challenges (I)–(III).

The structure of this paper is as follows: The traditional MPC
methodology applied for end-point control of batch processes is
briefly summarized in Section 2. The indices on validity of predic-
tions considered in this paper are introduced in Section 3. A solution
for further improvement of end-point control results is provided
in Section 4. In Section 5, a fed-batch fermentation example shows
how ensuring validity of predictions can improve end-product
quality while simplifying deployment. The paper ends with con-
cluding remarks in Section 6.

2. MPC for end-point control in batch processes

This section briefly describes the MPC methodology with one
decision point for the batch, also known as the mid-course cor-
rection methodology. The decision point can be set towards the
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