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a  b  s  t  r  a  c  t

A  non-linear  model  predictive  controller  (NMPC)  was  investigated  as  a route  to delivering  improved
product  quality,  batch  to  batch  reproducibility  and  significant  cost  reductions  by  providing  a  means
for  better  controlling  the  bioreactor  environment  in  a Chinese  hamster  ovary  (CHO)  mammalian  cell
fed-batch  process.

A  nonlinear  fundamental  bioprocess  model  was  developed  to  represent  the  CHO  mammalian  cell fed-
batch  bioprocess  under  study.  This  developed  nonlinear  model  aided  in  the  configuration  and  tuning
of  a NMPC  through  off-line  simulation.  The  tuned  NMPC  was  applied  to  a  15  L  pilot-plant  bioreactor
for  glucose  concentration  fixed  set-point  control.  Traditionally,  bioprocesses  are  characterized  by  long
critical process  parameter  (CPP)  measurement  intervals  (24  h).  However,  advances  in PAT  have  helped
increase  CPP  measurement  frequency.  An  in situ  Kaiser  RXN2  Raman  spectroscopy  instrument  was  used
to monitor  the  glucose  concentration  at 6  min  intervals.

Glucose  concentration  control  of  a bioreactor  is  not  a trivial  task  due  to high  process  variability,  mea-
surement  noise  and  long  measurement  intervals.  Nevertheless,  NMPC  proved  successful  in achieving
closed  loop  fixed  set-point  control  in the  presence  of  these  common  bioprocess  operation  attributes.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The biopharmaceutical sector represents a significant and grow-
ing division of the general pharmaceutical industry. The number
of biopharmaceuticals currently on the market is just in excess of
200 and in 2009, they generated $99 billion in sales. The market is
predicted to grow between 7 and 15% annually over the next sev-
eral years and by 2013, four of the five top-selling drugs will be
protein-based products [1].

The control of bioprocesses is in its infancy in comparison to the
chemical and traditional pharmaceutical sectors. This is due in part
to the challenges associated with bioreactor control: poor process
understanding, the lack of measurement of relevant process param-
eters and difficulties inherent in controlling bioprocesses which are
dynamic, complex and non-linear. Process control of bioreactors
seeks to influence the complex intracellular reactions of billions of
cells by controlling their extracellular environment [2].

Historically it has been observed that mammalian cell num-
bers and total protein productivity can be dramatically increased
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with lowered process concentrations of the byproducts associated
with mammalian cell metabolism. The main byproducts of mam-
malian cell metabolism are lactate and ammonia which result from
glucose and glutamine consumption, respectively. Controlling the
glucose and glutamine concentrations in a bioreactor to reduced
levels forces a metabolic shift, which results in cells becoming much
more efficient in their use of the available nutrients [3,4].

Current industrial control of nutrient levels is predominately
manual. Bolus feeds are generally introduced at 24 h intervals based
on off-line analysis of daily process samples and a priori process
knowledge [5,6]. However, these feeding strategies are labor inten-
sive involving sampling, recalculation, and manual adjustments.

To reduce batch variation and improve process economics,
many biopharmaceutical manufacturers aim to move beyond
today’s “quality-by-inspection” methodology and adopting qual-
ity by design (QbD) methods under the FDA’s process analytical
technologies (PAT) initiative. These methods center on measuring
critical quality attributes and critical process parameters during
processing. Application of the latest sensor technologies such as
mass and Raman spectroscopy enables cell characteristics as well
as substrate and metabolic byproduct concentrations to be mea-
sured online or at-line in a bioreactor [7]. Timely availability of
such data helps improve the operators’ knowledge of the biopro-
cess and thus enhances model development and the creation of
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Nomenclature

A ammonia concentration (mM)
Ci inhibitor concentration (mM)
Ci* inhibitor saturation concentration (mM)
d magnitude of process-model mismatch (mM)
e error between process variable and set-point (mM)
F feed-rate (L h−1)
G glucose concentration (mM)
k sample interval (h)
kd,Q degree of degradation of glutamine (h−1)
KL lactate saturation constant (mM)
KA ammonia saturation constant (mM)
KG glucose saturation constant (mM)
KQ glutamine saturation constant (mM)
kd death rate (h−1)
kd,max maximum death rate (h−1)
k� intrinsic death rate (h−1)
KLYSIS rate of cell lysis (h−1)
L lactate concentration (mM)
mG glucose maintenance coefficient (mmol  cell−1 h−1)
mQ glutamine maintenance coefficient (mmol  cell−1

h−1)
M control horizon
P prediction horizon
Q glutamine concentration (mM)
qi specific inhibitor production rate (h−1)
SG glucose concentration in the feed (mM)
SQ glutamine concentration in the feed (mM)
u control action (L h−1)
V volume (L)
XT total cell density (cells L−1)
XD dead cell density (cells L−1)
XV viable cell density (cells L−1)
y process variable (mM)
ysp set-point (mM)
ŷ model predictions (mM)
YA,Q yield of ammonia from glutamine
YL,G yield of lactate from glucose
YX,G yield of cells from glucose (cells mmol−1)
YX,Q yield of cells from glutamine (cells mmol−1)

Greek symbols
�  diagonal elements of output weight matrix
� diagonal elements of input weight matrix
� growth rate (h−1)
�max maximum growth rate (h−1)

more sophisticated automation and control systems used in such
processes.

There are many academic projects focusing on following this
trend through the application of automated open and closed loop
nutrient concentration control strategies using predefined feeds
and feeds determined using on-line or at-line sensors to mea-
sure the process variable (PV), respectively [8]. On-line models
have also been used to estimate the nutrient concentration with
an at-line sensor used to periodically update the model [6]. Lu et
al. [8] demonstrated two different automated cell culture control
strategies. The first method was based upon on-line capacitance
measurements where cultures were fed based on an on-line cal-
culation involving growth and nutrient consumption rates. The
second method was based upon automated glucose measure-
ments obtained from the Nova Bioprofile FLEX autosampler (Nova

Biomedical, UK) where cultures were fed to maintain a target glu-
cose level by using an on-line feedback calculation.

Lee et al. [9] used a low-glutamine fed-batch feedback control-
loop process in attempting to control ammonia and lactate for a
293-HEK mammalian cell bioprocess for adenovirus production
.The control algorithm consisted of a simple on-line calculation.
Controlling glutamine levels at 0.1 mM,  with no other modifications
improved cell density and gave a 10-fold improvement in virus
titer. Li et al. [10] controlled glucose at 0.3 mM and glutamine at
0.5 mM via an online closed loop feeding calculation, which related
to ammonia and lactate levels decreasing by 74% and 63%, respec-
tively. Their cultures extended from eight to 14 days, with a 1.7-fold
increase in monoclonal antibody (MAb) titers.

Bioprocesses are inherently nonlinear and are traditionally asso-
ciated with long nutrient concentration measurement intervals.
Furthermore in a PAT environment, where the nutrient con-
centration is determined online via a spectroscopic technique,
measurement noise is prevalent. The aforementioned closed-loop
control strategies, based on simple online calculations of the con-
troller output may  not be advantageous or optimal for the nutrient
concentration control of bioprocesses portraying such attributes.

In this study, nutrient concentration control was  accomplished
through the application of a model predictive controller (MPC).
Model predictive control, also referred to as receding horizon con-
trol and moving horizon optimal control, has been widely adopted
in industry [11–15] and is currently the most widely used of all
model-based advanced control methodologies for industrial appli-
cations. Qin and Badgwell [16] presented a survey of industrial
model predictive control technology. Originally developed to meet
the needs of power plants and petroleum refineries, MPC  tech-
nology can now be found in a wide range of application areas,
including chemicals, food processing, automotive, and aerospace
applications [16]. Bioprocess applications of MPC  have appeared in
a number of academic projects recently. Aehle et al. [17] exper-
imentally applied a MPC  to indirectly control the oxygen mass
consumed by mammalian cells in a bioreactor by manipulating the
glutamine feed-rate. Ashoori et al. [18] simulated the use of MPC
based on a detailed model for penicillin production in a fed-batch
bioreactor. The main control goal was to get a pure product with
a high concentration, by regulating temperature and pH at certain
levels.

The name MPC  stems from the idea of employing a model of the
process to be controlled which is used to predict the future behav-
ior. This prediction capability allows optimal control problems to
be solved on-line, where tracking error, namely the difference
between the predicted output and the desired reference, is min-
imized over a future horizon, possibly subject to constraints on
the manipulated inputs and outputs. While linear model predic-
tive control (LMPC) has been popular since the 1970s, the 1990s
witnessed an increased interest from control theoretists as well as
control practitioners in the area of nonlinear model predictive con-
trol (NMPC) [19,20] due to the need to operate processes under
tighter performance specifications. At the same time, more con-
straints, stemming, for example, from environmental and safety
considerations need to be satisfied. Often these demands can only
be met  when process nonlinearities and constraints are explicitly
considered in the controller. In addition, if the system is highly non-
linear, such as bioprocesses, control based on the prediction from
a linear model may result in unacceptable response [21]. In some
cases, remarkable static errors exist, and in other cases, oscillation
or even instability may  occur [22]. Therefore, non-linear models
should be used to describe the behavior of a highly non-linear bio-
process system. Nagy [23] applied NMPC to adequately control the
nonlinear nature of a bioreactor process.

There are a number of difficulties associated with imple-
menting a NMPC [24–28]. One of the major difficulties is the
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