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a  b  s  t  r  a  c  t

Generalized  polynomial  chaos  expansion  provides  a computationally  efficient  way  of  quantifying  the
influence  of  stochastic  parametric  uncertainty  on  the  states  and  outputs  of  a  system.  In this  study,  a
polynomial  chaos-based  method  was proposed  for an  analysis  and  design  of  control  systems  with  para-
metric  uncertainty  over  a non-hypercube  support  domain.  In the  proposed  method,  the  polynomial  chaos
for the  hypercube  domain  was  extended  to  non-hypercube  domains  through  proper  parameterization
to  transform  the  non-hypercube  domains  to hypercube  domains.  Based  on the  proposed  polynomial
chaos  framework,  a  constrained  optimization  problem  minimizing  the mean  under  the  maximum  allow-
able variance  was  formulated  for a  robust  controller  design  of dynamic  systems  with  the  parametric
uncertainties  of  the non-hypercube  domain.  Several  numerical  examples  ranging  from  integer  to  frac-
tional order  systems  were  considered  to validate  the  proposed  method.  The  proposed  method  provided
superior  control  performance  by  avoiding  the  over-bounds  from  a  hypercube  assumption  in  a compu-
tationally  efficient  manner.  From  the simulation  examples,  the  computation  time by  gPC  analysis  was
approximately  10–100  times  lower  than  the  traditional  approach.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Modeling inaccuracies or uncertainties are inevitable in
practice. The deterministic worst case setting is the most popu-
lar way of considering parametric uncertainty in control theory
[1–3]. One of the drawbacks of this worst case-based method is
its computational complexity, in that it often becomes computa-
tional intractable for general uncertainty structures [4]. To avoid
this problem, the uncertainties are normally assumed to be of an
interval or hypercube type in the worst case approaches. On the
other hand, when the uncertainties are not of the hypercube type,
they need to be over bounded by a hypercube, which can lead
to an excessively conservative design. Therefore, a probabilistic
approach that can handle the actual type of uncertainties should
be considered for a proper controller design.

The Monte-Carlo (MC) method is a representative traditional
probabilistic approach for the analysis and control of uncertain
systems [4–6]. The brute-force implementation of the MC  method
involves first generating an ensemble of random realizations with
each parameter drawn randomly from its uncertainty distribution.
Solvers are then applied to each member to obtain an ensemble
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of results. The ensemble of results is then post-processed to esti-
mate the relevant statistical properties, such as the mean, standard
deviation, and density function. The stability and robustness of the
system against the uncertainties can be inferred from these sta-
tistical properties. The estimation of the mean converges with the
inverse square root of the number of runs, which makes MC  meth-
ods computationally expensive. The high computational cost of MC
methods has motivated the development of computationally effi-
cient methods for uncertainty propagation and quantification that
replaces or accelerates them, such as Quasi Monte Carlo (QMC)
methods [4,7,8] and generalized polynomial chaos methods (gPC)
[9–12].

Many studies have considered probabilistic approach for robust
controller design [4,13–15]. These studies, however, focused pri-
marily on MC/QMC methods rather than the gPC method. The most
popular approach is to consider linear systems with stochastic addi-
tive Gaussian input [13]. For a linear time invariant system, the
states are also Gaussian. Therefore, the predictive control problem
is formulated as a standard chance constraint problem. When para-
metric uncertainties are involved, as reported in reference [14], the
scenario approach is suggested for robust model predictive con-
trol. In reference [15], the MC method was used to design a full
state feedback controller in mini unmanned aerial vehicles. Please
refer to [16] for a recent update of the probabilistic methods for
control system design.
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Fig. 1. Closed-loop control system.

This study considered generalized polynomial chaos (gPC)
expansions as a functional surrogate model of a system model in
the presence of uncertainty of the non-hypercube type. Although
uncertainty propagation and quantification using gPC expansions
have been studied extensively, the application of gPC to proba-
bilistic robust control is relatively new [17,18], and unavailable to
systems with uncertainty of the non-hypercube domain.

In this study, a polynomial chaos-based method was  proposed
for probabilistic analysis and robust controller design for sys-
tems with parametric uncertainty over the non-hypercube support
domain.

This paper is organized as follows. Section 2 introduces the
theory of gPC methods for uncertainty with a hypercube domain.
Section 3 derives several parameterizations for an analysis of a
non-hypercube domain. In Section 4, the gPC based method for the
fraction order controller design is proposed. Section 5 includes sev-
eral examples of probabilistic analysis and controller design of the
systems with non-hypercube uncertainty.

2. Probabilistic analysis using polynomial chaos theory for
hypercube domain

Consider a closed loop control system in Fig. 1 with a plant and
a controller:

C(s) = Kp + Ki

s�
+ Kds�;

G(s) = bmsˇm + ... + b0sˇ0

ans˛n + ... + a0s˛0
e−Ls

(1)

where the vector of its parameter � = (a1, . . .,  an, b1, . . .,  bm, L) =
(�1, �2, . . .,  �N) is a random vector of mutually independent uniform
random components with probability density functions of �i(�i) :
�i → R

+. Therefore, the joint probability density of the random
vector, �, is � =

∏N
i=1�i, and the support of � is � ≡

∏N
i=1�i ∈ R

N .
The set of one-dimensional orthonormal polynomials, {�i(�i)

di
m=0},

can be defined in finite dimension space, �i, with respect to the
weight, �i(�). Based on a one-dimensional set of polynomials, an
N-variate orthonormal set can be constructed with P total degrees
in the space, �, using the tensor product of the one-dimensional
polynomials that satisfies:

∫
�

˚m(�)˚n(�)�(�)d� =
{

1 m = n

0 m /= n
(2)

Considering a response function of the system output f (y(t, �))
with the statistics (e.g. mean and variance) of interest, the

N-variate Pth order approximation of the response function can
be constructed as follows:

fN
P(y(t, �)) =

M∑
i=1

�
f m(t)˚m(�);

M + 1 =
(

N + P

N

)
= (N + P)!

N!P!

(3)

where P is the order of polynomial chaos, and
�
f m is the coefficient

of the gPC expansion that satisfies (2) as follows:

�
f m = E[˚mf (y)] =

∫
�

f (y)˚m(�)�(�)d� (4)

where E[] denotes the expectation operator.
The probabilistic collocation approach [9] was used to obtain the

gPC coefficients of the response function because of its simplicity.
The algorithm is expressed briefly as follows:

• Choose a collocation set, {�(m)
i

, w(m)}qi

m=1
for each random com-

ponent, �i, for every direction i = 1, . . .,  N, and construct a
one-dimensional integration rule,

Q (i)
qi

[g] =
qi∑

j=1

g(�(j)
i

)w(j)
i

(5)

where Q[ ] denotes the quadrature approximation of the univariate
integration. A Gaussian quadrature [11] is normally used as a one-
dimensional integral rule in classical spectral methods, such as the
deterministic equivalent modeling method (DEMM).

• Obtain an N-dimensional integration rule by the tensorization of
the one-dimensional integral rule:

	Q [g] = (Qq1
(1) ⊗ . . . ⊗ QqN

(N)) [g]

=
q1∑

j1=1

...

qN∑
jN =1

g(�(j1)
1 , . . ., �

(jN )
N

)(w1
(j1) ⊗ ... ⊗ wN

(jN )) �
∫

�

g(�)�(�)d�
(6)

where ⊗ and 	Q [] denote the tensor product and the multivariate
quadrature (cubature) approximation, respectively.

• Approximate the gPC coefficients in (4) using the numerical inte-
gration rule in (6).

˜
�
f j = 	Q [f (y, �)˚(�)�] =

Q∑
m=1

f (�(m))˚j(�
(m))w(m) for j = 1, ..., M (7)

where ˜
�
f is the numerical approximation of

�
f using cubature.

• Construct an N-variate Pth order gPC approximation of the
response function in the form, f̃ P

N =
∑M

j=1˜
�
f j˚j(�).

Once all the gPC coefficients have been evaluated, a post-
processing procedure is then carried out to obtain the statistics of
the response function, f (y(t, �)).

The mean of the response function is the first expansion coeffi-
cient,

E[f̃ P
N ] = �f =

∫
�

f̃ P
N �(�) d�=

∫
�

⎡
⎣ M∑

j=1

�
f j(�)˚j(�)

⎤
⎦ �(�) d� = �

f 1 (8)
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