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a  b  s  t  r  a  c  t

Feedforward  from  measurable  disturbances  is  a powerful  complement  to feedback  control  to  improve
disturbance  rejection  capability.  Recent  works  have  remarked  the  necessity  of  a  design strategy  for  those
cases where  the  ideal  feedforward  controller  is  not  realizable.  In this  paper,  a simple  shaping  design
procedure  is  presented  together  with  straightforward  rules  to obtain  optimal  feedforward  controllers
for  the  case  when  the  ideal compensator  is  not  realizable  due  to right-half  plane  zeros  in  the process
dynamics.  Finally,  some  simulations  and  a robustness  analysis  demonstrate  the  benefits  of  the  proposed
tuning  rules.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Measurable disturbance compensation through feedforward
control structures is a well-known strategy in process control to
improve classic feedback performance [1,2]. However, the real-
izability conditions of the ideal feedforward controller are rarely
studied and therefore there are only a few rules to deal with these
scenarios.

The ideal feedforward compensator within a classic feedforward
scheme is formed as the quotient of the reversed sign dynam-
ics between the load disturbance and the process output divided
by the dynamics between the control signal and the process out-
put. Since a process inverse function is needed, this controller may
not be realizable. These cases are: non-realizable delay inversion,
RHP (right-half plane) zeros, integrating poles, or improper transfer
function [2,3].

In [4], it was demonstrated that if the perfect feedforward con-
troller is not applied, a residual effect from the disturbance is fed
back to the feedback controller which, if ignored, greatly deterio-
rates the performance. To counteract this effect, a non-interacting
feedforward structure was also proposed. This scheme highly sim-
plifies feedforward compensator design as an independent nominal
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analysis can be developed for both reference tracking and distur-
bance rejection, even if the ideal compensator is not realizable.

Lately, tuning rules for feedforward compensators in those cases
where the perfect controller is not realizable have appeared within
classic and non-interacting feedforward control schemes. In partic-
ular, the problem of non-realizable delay inversion was treated in
[5], where a design based on the minimization of integral abso-
lute error and the reduction of the undershoot in the response
were proposed. This rule was later complemented [6,7] for the non-
interacting scheme and a final tuning guideline was presented to
handle the problem of delay inversion.

Within an internal model control structure, a different approach
for, initially stable systems [8], and later for unstable processes
[9], were proposed. In these works, the authors establish a gen-
eral design framework, in which a robust tuning procedure is used.
However, this control structure, as well as those with feedforward
made from the reference, requires a different design and are not
treated in this work.

The main objective of this work is to obtain a straightfor-
ward guideline to design optimal feedforward compensators for
systems with RHP zeros. As a result, three simple tuning rules
for non-interacting feedforward controllers affected by step-like
disturbances are derived to obtain a desired settling time, or to
minimize H∞ or H2 norms, respectively.

The paper is organized as follows. A brief overview of the
non-interacting feedforward scheme including closed-loop rela-
tionships is presented in Section 2. Section 3 introduces the
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Fig. 1. Block diagram illustrating the non-interacting feedforward control scheme.

proposed feedforward structure for shaping the disturbance
rejection response. Furthermore, three simple rules to define the
desired temporal response are obtained. In Section 4, the proposed
design is tested with some simulations and robustness analysis.
Finally, Section 5 conducts the conclusions of the work.

2. Feedforward from disturbances

In this section, the non-interacting feedforward control struc-
ture presented in [4] is briefly described. The main advantage of
this scheme is that it makes an independent analysis and design
for reference tracking with the feedback controller and disturbance
rejection with the feedforward compensator possible, as stated in
[6,7].

Fig. 1 presents the non-interacting feedforward block diagram.
There are two processes Pu and Pd relating the process output y to
the control signal u and the measurable disturbance d, respectively.
A primary controller Cfb is used within a classic closed-loop system
to guarantee reference tracking in spite of model uncertainties and
measurement noise. Moreover, the feedforward compensator Cff
is connected in open-loop to counteract measurable disturbance
effects. Finally, a block H is introduced to totally remove the effect
of the measurable disturbance from the primary control loop. This
structure is a generalization of the classical feedforward scheme
(which has H = 0).

The relationships for reference tracking and disturbance rejec-
tion with this scheme are

y(s)
r(s)

= L(s)
1 + L(s)

= �(s) (1)

y(s)
d(s)

= Pff (s)
1 + L(s)

+ L(s)H(s)
1 + L(s)

= Pff (s)ε(s) + H(s)�(s) (2)

where ε(s) and �(s) are the sensitivity and complemen-
tary sensitivity transfer functions, respectively, such that
ε(s) + �(s) = 1, L(s) = Cfb(s)Pu(s) is the open-loop direct chain, and
Pff(s) = Pd(s) − Cff(s)Pu(s) is the open-loop disturbance rejection.

Note that in a classic feedforward scheme – with H = 0 –
perfect disturbance rejection is achieved for Cff(s) = Pd(s)/Pu(s).
However, when the ideal compensator is not realizable, an inter-
action between Cfb(s) and Cff(s) arises since Pff /= 0. Within the
non-interacting feedforward scheme, it is possible to make Cfb(s)
independent of d by choosing H(s) = Pff(s) such that

y(s)
d(s)

= Pff (s) (ε(s) + �(s)) = Pff (s). (3)

In what follows, the special case of non-realizable feedforward
compensators for RHP zeros is presented, and a procedure to shape
the desired response is derived. First, a tuning rule to obtain a
desired settling time is obtained. Afterwards, two simple tuning
rules based on the minimization of the H2 and H∞ norms are
proposed.

3. Design of feedforward compensator

3.1. The problem of non-minimum phase zero

The commented problem appears when inverting process Pu(s)
with RHP zeros, since it results in unstable poles in Cff(s). Let us
consider the following process descriptions

Pu(s) = �u(−ˇus + 1)
D−

u (s)
e−�us ˇu > 0, (4)

Pd(s) = �d

D−
d

(s)
e−�ds (5)

such that �u ≤ �d, s = 1/ˇu is a zero in the right-half plane, and
D−

u (s) = 1 +∑nu

i=1au[i]si and D−
d

(s) = 1 +
∑nd

i=1ad[i]si are polynomi-
als with nu and nd degree, respectively, such that all their roots are
located in the LHP (left-half plane). Note that it is supposed with-
out any loss of generality that D−

u (0) = D−
d

(0) = 1 to ensure that
�u and �d are the process static gains. Note that it is considered
that no unstable poles exist in the system since the non-interacting
feedforward would result in an internally unstable controller.

If the disturbance rejection problem is studied in this case, it is
obtained that

y(s)
d(s)

= e−�ds

(
�d

D−
d

(s)
− Cff (s)

�u(−ˇus + 1)
D−

u (s)
e−(�u−�d)s

)
. (6)

This problem is typically treated in the literature by defining the
feedforward compensator Cff(s) just as a gain or a lead-lag filter.
Sometimes, a delay is also needed to ensure that the compensa-
tion is not made too early. Hereafter, a methodology to design the
feedforward compensator to shape (6) is proposed.

3.2. Feedforward compensator structure

This section presents a proposal for the feedforward controller
transfer function in order to compensate the RHP zeros and to
obtain an undershoot-free response for the load disturbance rejec-
tion problem. To this end, the feedforward compensator is defined
as

Cff (s) = �d

�u
· D−

u (s)
D−

d
(s)

· (1 +
∑mff

i=1ˇff [i]si)

(�ff s + 1)nff
e−(�d−�u)s. (7)

where ˇff[i] and �ff are the coefficients to be tuned.
Remember that the feedforward controller time delay is realiz-

able since �u ≤ �d. Otherwise, the ideas presented in [5,7] should
be used.

Inserting the expression for Cff(s) in (7) in Eq. (6) gives

y(s)
d(s)

= �de−�ds

D−
d

(s)

(
1 − (1 +

∑mff

i=1ˇff [i]si)(−ˇus + 1)

(�ff s + 1)nff

)
. (8)

The idea is to cancel all stable roots of D−
d

(s) with ˇff[i] coeffi-
cients, and therefore it is necessary to set mff = nd. Furthermore, it
is considered nff ≥ nu to achieve a realizable compensator. Then, �ff
is used as the only tuning parameter.

Using the binomial theorem, Eq. (8) can be reformulated as

y(s)
d(s)

= �dP0s

(�ff s + 1)nu
· P(s)

D−
d

(s)
e−�ds (9)

with

P0 = nu�ff + ˇu − ˇff [1] (10)
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