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a  b  s  t  r  a  c  t

To  realize  stable  production  in  the steel  industry,  it is  important  to control  molten  steel  temperature  in  a
continuous  casting  process.  The  present  work  aims  to provide  a general  framework  of  gray-box  modeling
and  to  develop  a  gray-box  model  that predicts  and  controls  molten  steel  temperature  in a tundish  (TD
temp)  with  high  accuracy.  Since  the  adopted  first-principle  model  (physical  model)  cannot  accurately
describe  uncertainties  such  as  degradation  of  ladles,  their  overall  heat  transfer  coefficient,  which  is a
parameter  in  the  first-principle  model,  is  optimized  for each  past  batch  separately,  then  the  parameter
is  modeled  as  a function  of process  variables  through  a statistical  modeling  method,  random  forests.
Such  a  model  is  termed  as  a serial gray-box  model.  Prediction  errors  of the  first-principle  model  or  the
serial  gray-box  model  can  be  compensated  by using  another  statistical  model;  this  approach  derives  a
parallel gray-box  model  or  a combined  gray-box  model.  In addition,  the  developed  gray-box  models  are
used  to  determine  the  optimal  molten  steel  temperature  in  the  Ruhrstahl–Heraeus  degassing  process
from  the  target  TD temp,  since  the  continuous  casting  process  has  no  manipulated  variable  to  directly
control  TD  temp.  The  proposed  modeling  and  control  strategy  is  validated  through  its  application  to
real  operation  data  at a steel  work.  The  results  show  that  the  combined  gray-box  model  achieves  the
best  performance  in  prediction  and  control  of  TD  temp  and  satisfies  the  requirement  for  its  industrial
application.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The steel industry faces stiff competition in the global market,
and each steel company has to realize stable and efficient opera-
tion and produce high quality products satisfying various customer
demand [1]. The process diagram of the steel making process is
shown in Fig. 1. The tundish is a vessel used for delivering molten
steel from a ladle to a mold in the continuous casting process.
In steel making, control of the molten steel temperature in the
tundish (TD temp) is one of the key factors to realizing stable
operation. If TD temp is too high, breakouts may  occur and cause
tremendous increase in maintenance cost and productivity loss.
When the temperature is too low, clogging in the tundish nozzle
occurs, which causes disruptions in the casting process. However,
no effective manipulated variable is available after the secondary
refining process to control TD temp. To realize the target TD temp,
therefore, it is necessary to adjust the molten steel temperature
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in the secondary refining process (Ruhrstahl–Heraeus degassing
process). The molten steel temperature at the end of secondary
refining operation is hereafter called RH temp. To control TD temp
by manipulating RH temp, a model relating TD temp and RH temp
needs to be constructed. In the past, various models such as first-
principle models [2–7], statistical models [8], and gray-box models
[9–12] have been proposed.

The gray-box model, which integrates a first-principle model
and a statistical model, has attracted researchers’ attention by its
capability: known linear/nonlinear phenomena can be embedded
in the first-principle model, and an unknown relationship among
variables can be embedded in the statistical model by extracting
such a relationship from the data. In general, gray-box models are
more accurate than simplified first-principle models, less compli-
cated than computational fluid dynamics (CFD) models, and more
easily interpreted than statistical models. Although a gray-box
model aims to improve the prediction performance by combining
a first-principle model and a statistical model, the accuracy of the
first-principle model is still important. In general, first-principle
models have various parameters which need to be determined by
using data. Even when some parameters depend on the operating
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Fig. 1. Schematic diagram of the steel making process.

Fig. 2. Generalized framework of gray-box modeling.

conditions, they are kept constant if it is difficult to identify the rela-
tionship between the parameters and the operating conditions. In
such a case, large prediction error might be caused.

The present work aims to develop a new gray-box model that
can overcome such deficiency and can predict molten steel tem-
perature with high accuracy. To achieve this goal, a parameter in
the first-principle model is estimated from process variables with a
nonlinear statistical model. In addition, process disturbances such
as uncertainties in temperature measurements, composition and
weight of added alloys and the extent of oxidation reactions for
removal of impurities are also taken into account. Ideally, such
disturbances should be modeled by adding certain mathematical
expressions to the first-principle model. However, due to lack of
process information, realizing such mathematical expressions is
difficult and therefore another statistical model is developed to
compensate prediction errors caused by such process disturbances.
Random forests (RF) is adopted in this work to build statistical
models.

In Section 2, three types of gray-box models are explained in
general. Then, the first-principle model of the steel making process
is described in Section 3, and the statistical models integrated with
the first-principle model to build the gray-box models are described
in Section 4. In Section 5, the proposed method is applied to the
problems of predicting and controlling molten steel temperature in
a real steel making process. Finally, the contents are summarized
in the conclusion section.

2. Gray-box models

A general framework of the gray-box modeling is shown in Fig. 2,
where gray-box models are categorized into three types, i.e., paral-
lel gray-box models [9], serial gray-box models [10], and combined
gray-box models. In this section, modeling methods of these gray-
box models are explained.

2.1. Parallel gray-box model

A typical gray-box model is constructed by combining a first-
principle model and a statistical model sequentially; the statistical
model is built so as to compensate the error of the first-principle
model. This type of gray-box model, hereafter called the parallel
gray-box model, is developed through the following steps.

i. Build a first-principle model ffp to predict an output variable y
from input variables xfp.

ŷfp = ffp(xfp, �) (1)

where ŷfp is the prediction of y and � is a parameter vector. The
first-principle model can be of any form including differential
algebraic equations. Eq. (1) can be derived from such a first-
principle model as shown in the next section.

ii. Estimate � by minimizing the sum of squared errors.

�̃ = arg min
�

Nd∑
n=1

e2
fp,n (2)

efp,n = yn − ffp(xfp,n, �) (3)

�L ≤ � ≤ �U (4)

where xfp,n and yn are the nth sample of input and output
variables, respectively. Nd is the number of samples used for
developing the model. �L and �U are lower and upper bound
vectors of parameters which are determined in advance.

iii. Build a statistical model fpa to predict the output error efp from
input variables x.

ϕ̃pa = arg min
ϕpa

Nd∑
n=1

(efp,n − fpa(xn, ϕpa))2 (5)

êfp,n = fpa(xn, ϕpa) (6)

where ϕpa is a vector of parameters in the outer statistical
model. In general, xfp is a subset of x.

iv. Build a gray-box model by combining the first-principle model
and the outer statistical model.

ŷpa = ffp(xfp, �̃)  + fpa(x, ϕ̃pa) (7)

where ŷpa is the prediction of y by using the parallel gray-box
model.

The parallel gray-box model is the simple sum of the first-
principle model and the statistical model. This statistical model is
referred to as the outer statistical model because it is used on the
outside of the first-principle model. In general, the parallel gray-
box model can significantly improve the prediction performance
because it can extract information from data that is not used in
the first-principle model and also it can overcome the limitations
imposed by the structure of the first-principle model.
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