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a  b  s  t  r  a  c  t

A  non-iterative,  non-cooperative  distributed  state-feedback  control  algorithm  based  on neighbor-to-
neighbor  communication,  named  distributed  predictive  control  (DPC),  has  been  recently  proposed  in
the  literature  for  constrained  linear  discrete-time  systems,  see  [15,14,2,4]. The  theoretical  properties  of
DPC, such  as  convergence  and  stability,  its  extensions  to the  output  feedback  and  tracking  problems,  and
applications  to  simulated  plants  have been  investigated  in these  papers.  However,  for  a  practical  use  of
DPC  some  realization  issues  are  still open,  such  as  the automatic  selection  of  some  tuning  parameters,  the
initialization  of the  algorithm,  or its  response  to  unexpected  disturbances  which  could  lead  to  the lack of
the recursive  feasibility,  a  fundamental  property  for any  model  predictive  control  (MPC)  technique.

This paper  presents  novel  solutions  to all these  issues,  with  the  goal  to make  DPC  attractive  for  industrial
and  practical  applications.  Three  realistic  simulation  examples  are  also  discussed  to evaluate  the  proposed
numerical  algorithms  and  to  compare  the  performances  of  DPC  to those  of a standard  centralized  MPC
algorithm.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Due to the growing complexity of process plants and to the
increasing number of networks of systems, in the last decades
researchers have been putting huge efforts in the field of decentral-
ized and distributed control [26,19]. Distributed solutions seem to
be very promising with respect to decentralized schemes, because
they allow one to take advantage of information transmission
between the local controllers, see e.g. [18], and do not require
the computational and communication loads of centralized solu-
tions. However, distributed techniques are characterized by an
intrinsically higher degree of complexity in the design phase with
respect to centralized controllers. This could represent a great
obstacle to their diffusion in the industrial world, and motivates
the development of many innovative distributed model predictive
control (MPC) algorithms for large-scale systems, see the survey
papers [25,6] and the book [22], where the most recent and popular
algorithms have been collected and described.

According to the classification of [25], a new non-iterative,
non-cooperative approach based on neighbor-to-neighbor com-
munication, called distributed predictive control (DPC), has been
described in [15,14,2,4], where its convergence and stability
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properties have also been extensively analyzed. However, for a
practical application of DPC, a number of issues concerning its real-
ization and tuning have still to be solved and its performances must
be assessed in realistic simulation scenarios. For these reasons, the
aim of this paper is to consider and provide easy solutions to the
main realization issues related to DPC (and similar distributed MPC
methods), i.e. the use of a discretization method preserving the
sparsity of the original continuous-time system, the computation
of the required invariant sets, and the definition, both in the off-line
and in the on-line phases, of the reference trajectories to be fol-
lowed by the state and control variables. The proposed algorithms
are then used for the realization and tuning of DPC applied to three
realistic simulation problems. Specifically, the continuous-time
models of the temperature dynamics in a simple building, of the
level in a four tank system, and of a flotation process are controlled
with DPC and the obtained performances are compared to those
of a centralized model predictive control (cMPC) algorithm.

The paper is organized as follows: in Section 2 the DPC algorithm
is summarized, while in Section 3.1 the discretization method, pre-
serving the sparsity of the underlying continuous-time system,
called mE-ZOH and originally presented in [7,8,12], is illustrated.
Simplified procedures for computing the RPI sets are presented in
Section 3.3. In Section 3.4, two techniques for the distributed design
of the reference trajectories are proposed, while Section 4 contains
the considered simulation examples. Some conclusions are drawn
in Section 5.
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Notation. A matrix is Schur stable if all its eigenvalues lie in the
interior of the unit circle. The short-hand v = (v1, . . .,  vs) denotes a
column vector with s (not necessarily scalar) components v1, . . .,  vs.
The symbol ⊕ denotes the Minkowski sum, namely C = A ⊕ B if and
only if C = {c : c = a + b, forall a ∈ A, b ∈ B}, while ⊕M

i=1Ai = A1 ⊕ . . . ⊕
AM . The Pontryagin difference is defined using the symbol �, i.e.
C = A � B if and only if C = {c : c + b ∈ A, forall b ∈ B}. For a discrete-time
signal st and a, b ∈ N, a ≤ b, we denote (sa, sa+1, . . .,  sb) with s[a:b].
Given a generic compact set L,  H = box(L) is the smallest hyper-
rectangle containing L with faces perpendicular to the cartesian
axis. Finally, ‖L‖∞ = max

l∈L
‖l‖∞.

2. The basic distributed predictive control algorithm

In this section, the distributed predictive control (DPC) algo-
rithm first presented in [15] and further developed in [4] is briefly
described. Let us assume that the system is constituted by M linear,
discrete-time, non-overlapping subsystems, dynamically coupled
through states and inputs, and subject to state and control con-
straints. For each subsystem Si, the dynamics is given by

xi
k+1 = Aiix

i
k + Biiu

i
k +

M∑
j=1,j /=  i

{Aijx
j
k

+ Biju
j
k
} + di

k (1)

where xi
k

∈ Xi ⊆ Rni and ui
k

∈ Ui ⊆ Rmi are the state and input

vectors of the ith subsystem Si (i = 1, . . . , M),  di
k ∈ Di ⊂ Rni is an

unknown bounded disturbance and the sets Xi, Ui and Di are con-
vex neighborhoods of the origin. The subsystem Sj is said to be a
neighbor of the subsystem Si if and only if Aij /= 0 and/or Bij /= 0,
i.e., if and only if the states xj and/or inputs uj of Sj influence the
dynamics of Si. The symbol Ni denotes the set of neighbors of Si

(which excludes i).
Letting xk = (x1

k
, . . .,  xM

k
), uk = (u1

k
, . . .,  uM

k
) and dk =

(d1
k, . . .,  dM

k ), the overall collective system can be written as

xk+1 = Axk + Buk + dk (2)

where the matrices A and B have block entries Aij and Bij

respectively, x ∈ X  =
∏M

i=1Xi ⊆ Rn, n =
∑M

i=1ni, u ∈ U =
∏M

i=1Ui ⊆
Rm, m =

∑M
i=1mi, d ∈ D  =

∏M
i=1Di ⊂ Rn, and X, U are convex by

convexity of Xi and Ui, respectively.

Remark 1. System 2 can be seen as the state-space representa-
tion of a discrete-time empirical model obtained from data through
identification procedures, for instance by means of impulse or step
response experiments, or it can be computed as the the lineariza-
tion and discretization of a continuous-time first principle model.
In the latter case, the discretization procedure must guarantee to
maintain the sparsity of the original continuous-time model, i.e.,
the mutual influences among the subsystems. This issue is dis-
cussed in the following Section 3.1.

The following assumption on decentralized stabilizability is
needed.

Assumption 1. There exists a block diagonal matrix K =diag(K1,
. . .,  KM), with Ki ∈ Rmi×ni , i = 1, . . .,  M such that: (i) A + BK is Schur,
(ii) Fii = (Aii + BiiKi) is Schur, i = 1, . . .,  M.

At any time instant k, each subsystem Si transmits to its
neighbors its future state and input reference trajectories (to
be later specified) defined over the prediction horizon N,
and called x̃i

k+� and ũi
k+�, � = 0, . . .,  N − 1, respectively. These

trajectories coincide with the assumed trajectories introduced
in [10]. By adding suitable constraints to its MPC  for-
mulation, Si is able to guarantee that, for all k ≥ 0, its
real trajectories lie in specified time invariant neighborhoods

of x̃i and ũi, i.e., xi
k

∈ x̃i
k ⊕ Ei and ui

k
∈ ũi

k ⊕ EUi , where 0 ∈ Ei and
0 ∈ EUi . In this way, the dynamics (1) of Si can be written as

xi
k+1 = Aiix

i
k + Biiu

i
k +

∑
j∈Ni

{Aijx̃
j
k

+ Bijũ
j
k
} + wi

k (3)

where

wi
k =

∑
j∈Ni

{Aij(x
j
k

− x̃j
k
) + Bij(u

j
k

− ũj
k
)} + di

k ∈ Wi

and Wi = ⊕j∈Ni
{AijEj ⊕ BijEUj } ⊕ Di.

Each subsystem, using the algorithm proposed in [20], solves
a robust MPC  problem considering that its dynamics is given by
(3), where the term

∑
j∈Ni

(Aijx̃
j
k+�

+ Bijũ
j
k+�

) represents an input

known in advance over the prediction horizon � = 0, . . .,  N − 1, to
be suitably compensated, and wi

k
is a bounded disturbance to be

rejected.
Similarly to [20], a nominal model of subsystem Si is associated

to Eq. (3)

xi
k+1 = Aiix

i
k + Biiu

i
k +

∑
j∈Ni

{Aijx̃
j
k

+ Bijũ
j
k
} (4)

while the control law to be used for Si is

ui
k = ui

k + Ki(x
i
k − xi

k) (5)

where Ki must be chosen to satisfy Assumption 1.
Letting zi

k
= xi

k
− xi

k
, in view of (3)–(5) one has

zi
k+1 = Fiiz

i
k + wi

k (6)

where wi
k

∈ Wi. Since Wi is bounded and Fii is Schur, there exists
a robust positively invariant (RPI) set Zi for (6) such that, for
all zi

k
∈ Zi, then zi

k+1 ∈ Zi. Given Zi define, if possible, two sets,
neighborhoods of the origin, �Ei and �Ui, i = 1, . . .,  M such that
�Ei ⊕ Zi ⊆ Ei and �Ui ⊕ KiZi ⊆ EUi , respectively.

At any time instant k each subsystem Si solves the following
i-DPC problem.

min
xi

k
,ui

[k:k+N−1]

VN
i =

N−1∑
�=0

(‖xi
k+�‖2

Qo
i

+ ‖ui
k+�‖2

Ro
i
) + ‖xi

k+N‖2
Po

i
(7)

subject to (4),

xi
k − xi

k ∈ Zi (8)

and, for � = 0, . . .,  N − 1

xi
k+� − x̃i

k+� ∈ �Ei (9)

ui
k+� − ũi

k+� ∈ �Ui (10)

xi
k+� ∈ X̂i ⊆ Xi � Zi (11)

ui
k+� ∈ Ûi ⊆ Ui � KiZi (12)

and to the terminal constraint

xi
k+N ∈ X̂F

i (13)

The choice of the positive definite matrices Qo
i , Ro

i , and Po
i in (7)

is discussed in Section 3.2 to guarantee stability and convergence,

while X̂F
i in (13) is a nominal terminal set which must be chosen to

satisfy the following assumption.

Assumption 2. Letting X̂ =
∏M

i=1X̂i, Û =
∏M

i=1Ûi and X̂F =
∏M

i=1X̂
F
i ,

it holds that:
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