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a  b  s  t  r  a  c  t

We  investigate  the problem  of  receding  horizon  control  for a  class  of nonlinear  processes.  A computa-
tionally  efficient  method  is  developed  to  identify  the optimal  control  action  with  respect  to  predefined
performance  criteria.  Using  Carleman  linearization  and  assuming  piece-wise  constant  control  action,  the
state vector  is discretized  explicitly  in  time.  The  optimal  control  problem  is then  reformulated  as  a non-
linear  optimization  problem  and  is  efficiently  solved  using  analytically  computed  sensitivity  functions
and  standard  gradient-based  algorithms.
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1. Introduction

Ever since the 1940s with the development of a general theory
on controller design based on transfer function models, the idea of
employing a model to assess system behavior and suppress devi-
ations from the desired objective trajectories has been central to
control systems theory [1]. Following the development of a solid
foundation to linear systems theory based on frequency and state
space methods, research focused on the development of a general
theory on nonlinear systems design. The pursuit of this chimera has
led to significant results on linear, nonlinear and stochastic control
[2]. These results usually assume that the operator has unlimited
power over the system. However, when considering the control
problem of industrial processes, that is hardly the case [3].

In industrial practice, one is often faced with systems under
various state, input and performance constraints [3–6]. A proper
control design method is therefore one that can explicitly addresses
these process constraints. Model predictive control (MPC), also
known as receding horizon control, is one such powerful tool
for handling these process constraints within an optimal con-
trol setting. At each sampling time, a control action is calculated
by solving a finite-horizon open-loop optimization problem. The
control action corresponding to the first sampling time is then
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implemented and the problem is solved again at the next samp-
ling time with an extended horizon (hence the name receding
horizon control). Since computations are repeated at each samp-
ling time, the control action can potentially be altered on-line
to suppress external disturbances and tolerate model inaccura-
cies. Extensive reviews on various MPC  formulations along with
their corresponding control-relevant issues such as closed-loop
stability, performance and constraint satisfaction can be found
in [7–10]. Other approaches on constrained control include anti-
windup schemes [11] and Lyapunov designs [12].

As the MPC  method is based on solving an underlying opti-
mization problem, the stability guarantees are naturally linked
to feasibility of such optimization problem. In this context, an
important issue is the effect of initial condition on the feasi-
bility of the optimization problem. To address this issue, [13]
proposed Lyapunov-based explicitly defined regions of attraction
for the closed loop system. The resulting Lyapunov-based con-
trollers, however, are not guaranteed to be optimal with respect
to an arbitrary performance criteria and do not admit perfor-
mance criteria in their design. Some of these concerns have been
addressed in [14–16] by introducing a Lyapunov-based MPC  formu-
lation that guarantees stability from an explicitly characterized set
of initial conditions in presence of state and input constraints. The
MPC  formulation has also been extended for applications involv-
ing switched nonlinear systems and hybrid systems [17,14,18].
The control issue for systems exhibiting two  time-scale behavior
has also been addressed via model reduction and a dual controller
design in [19,20]. More recently, research has focused on employing
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economic criteria to define MPC  cost functions [21,22]. Portfolio
optimization and index tracking problems have also been investi-
gated in [23,24].

The main focus of this manuscript is to develop a computa-
tionally efficient method for solving an optimal control problem
for a class of nonlinear systems. The optimal control problem is
formulated as a receding control horizon one, thus it requires solv-
ing a dynamic optimization problem at each time step. Employing
nonlinear transformations and assuming piece-wise constant con-
trol action, the dynamic optimization problem is reformulated as a
nonlinear programming (NLP) problem with analytically computed
sensitivity functions. This allows for the problem solution using
standard, gradient-based, search algorithms. The proposed method
lies at the interface between collocation and shooting methods. The
system states are discretized explicitly in time and their sensitiv-
ity to the control action is analytically computed, reminiscent of
collocation methods [25], while the states now enter the optimiza-
tion problem explicitly as a nonlinear function of the control action
and are eliminated from the equality constraints, thus reducing the
number variables, evocative of shooting methods [26,27].

2. Process description and preliminaries

The proposed controller design method deals with the design of
predictive controllers for bilinear and general nonlinear systems,
subject to nonlinear constraints, employing piece-wise constant
control actions.

The central objective of this work is to employ nonlinear
mapping techniques, in conjunction with nonlinear temporal
discretization (dynamic models which accurately describe the evo-
lution of xi(t) based on information from microscopic simulations).
Specifically, we focus on nonlinear models of the following form:

ẋ = f (x) + g(x)u = f (x) +
m∑

j=1

gj(x)uj(t), x(0) = x0 (1)

where x ∈ R
n is the state, u ∈ R

m is the vector of manipulated vari-
ables and uj(t), is the jth element of u. f(x) is a nonlinear vector
function of the state, and gj(x) is a nonlinear vector function, which
accounts for the influence of the jth control actuator on the process.
Without loss of generality, we assume that the target steady state
of the system is the origin.

To facilitate the presentation, we will use the following nota-
tion in the remainder of the manuscript. The Kronecker product
between matrices A ∈ C

N×M and B ∈ C
L×K can be defined as a matrix

C ∈ C
(NL)×(MK), where

C = A ⊗ B ≡

⎡
⎢⎢⎢⎣

a1,1B a1,2B · · · a1,MB

a2,1B a2,2B · · · a2,MB

· · · · · · · · · · · ·
aN,1B aN,2B · · · aN,MB

⎤
⎥⎥⎥⎦ .

We  also define the kth order Kronecker product as A[k] = A[k−1] ⊗ A,
A[1] = A and A[0] = 1. In ∈ R

n×n is defined as the identity matrix
of dimension n. We  denote the Boxcar function with BU(t ; ti,
tf) = U(H(t − ti) − H(tf − t)) a pulse function, where U is the pulse
amplitude, ti is the initiation time and tf the termination time (H
denotes the standard Heaviside function).

3. Predictive feedback controller design methodology

We  focus on the design of predictive output feedback controllers
with piece-wise constant control action. The method hinges on the
formulation of the dynamic optimization problem as a constrained
nonlinear problem.

We initially formulate the state feedback control problem and
present the appropriate formulations for bilinear systems, followed
by a formulations for nonlinear systems and finally output feedback
controller designs.

A finite-horizon optimal control problem can be formulated as
one of the general form:

u∗ = arg min
u

∫ tf

t=t0

J(x, u) dt

s.t.

ẋ − f (x) − g(x)u = 0,

x(t0) = x0,

f c(x, u) ≤ 0,

where fc denotes inequality constraints, which may be imposed
as a result of physical limitations (e.g. the available control action),
economic and production restrictions or artificial ones (e.g. a bound
on the Euclidean norm of x).

We focus our attention to problems where the control action
that can be implemented involves the decision at discrete time
instants of what the control action should be over a certain period
of time. Function u(t) then attains a piece-wise constant form with
respect to time. Let us assume that a finite number of such con-
trol action decisions are to be taken. We  denote the sequence of N
decisions that are taken for manipulated variable uj with Uj ∈ R

1×N .
Similarly, we denote the control sequence of the manipulated vari-
able vector u with U. Obviously U ∈ R

m×N . The problem can now be
reformulated as

U∗ = arg min
U

∫ Tf

t=T0

J(x, u) dt

s.t.

uj(t) =
N∑

i=1

BUj,i
(t; Ti−1; Ti), ∀j = 1, . . .,  m

ẋ − f (x) −
m∑

j=1

g(x)uj(t) = 0,

x(t0) = x0,

f c(x, u) ≤ 0

(2)

The decision variables are organized in the matrix form U = [Uj,i],
where i and j correspond to the ith decision for the jth manipulated
variable. (Ti−1, Ti] is the time period of the ith control action, T0 is
the initial time, and Tf = TN is the final time.

Remark 1. Some nonlinear model predictive control formulations
assign a final time penalty or a final time constraint to the optimiza-
tion problem. With slight abuse of notation, we assume that such a
constraint is incorporated directly to either J or fc, which are other-
wise independent of time. Generally, Dirac, Heaviside and Boxcar
type functions of time can be directly incorporated to the opti-
mization problem with minor modifications to the mathematical
expressions that follow.

Remark 2. In receding horizon control, it is customary to have
different control and prediction horizons. The choice of these two
horizons is important to obtain stable and robust controllers [7]. In
the present problem, the choice of the control horizon lies in the
choice of the time periods �Ti = Ti − Ti−1, ∀ i = 1, . . .,  N − 1 (which
are customarily chosen to be of equal value) and the choice of the
prediction horizon lies in the choice of �TN.
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