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a  b  s  t  r  a  c  t

Robustness  analysis  and  design  for the  integrating  unstable  delay  systems  are  discussed  in this  note.  The
Nyquist  criteria  have established  the  exact  stability  margin  of  the novel  robust  control  scheme,  which
is  meaningful  in  the  process  control  practice.  Comparing  with  the  existing  results,  the  control  law  is
designed  based  on the  delay-approximated  model  (using  the all-pole  Padé  approximation).  The  unstable
system  was  mirror  mapped  into  a minimum-phase  system  and  then  the  control  law  was  derived  by  the
closed-loop  gain  shaping  algorithm  (CGSA).  In addition,  a small  constant  ı  was  introduced  in the  algorithm
to prevent  the  integral  cancellation  limitation,  which  is  inherent  in  the  CGSA.  The proposed  scheme
obtains  several  advantages:  a concise  design  procedure  and  easy  to  implementation  due to the  simple
unit  feedback  structure.  The  comparative  analysis  with respect  to  recently  successful  works  illustrates  a
substantial  improvement  in  the  performance-robustness  tradeoff.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Unstable system is frequently encountered in the practical con-
trol engineering. And most industrial processes, involving material
or energy transportation, are characterized by the presence of time
delay. Control of unstable plant coupled with time delay has been
an active research field due to its theoretical difficulties and impor-
tant applications [1], e.g. chemical reactors, distillation columns,
unstable very large carriers, etc.

The integrating unstable delay plant belongs to the hardly
controllable system, with regard to the presence of both inte-
grating and unstable terms. In addition, the distinctiveness of
non-minimum phase dynamic would blame the stability analysis
and design for the quasi eigenpolynomial. Eventhough, several sig-
nificant works have been presented in the current literatures [2–8].
Motivated by the convenient application in process control indus-
try, the stabilization conditions of simple controllers are discussed
in [2–5] by virtue of the Nyquist stability criteria, i.e. P/PI/PD/PID
type control law. However, the problems of closed-loop control per-
formance and robustness are not detailed in these works. Based
on the internal model control (IMC) structure [9], a modified IMC
is developed to design and tune the controllers with double two-
degree-of-freedom (TDF) scheme for integrating and unstable delay
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systems [6]. Robustness measure have illustrated the improved
robust performance of the double TDF scheme assuming that uncer-
tainties are with a general formal description. In [10,7], using the
spectral factorization techniques and the polynomial approach, a
systematic design procedures were presented with the TDF control
system structure (two feedback controller) to improve the accept-
able performance. Recently, [8] presents a modified smith predictor
(MSP) for stable, integrating and unstable processes. A key con-
clusion is obtained that the MSP  is a PID controller in series with
a second order filter, and the actual control parameters are opti-
mized using the Particle Swarm Optimization. In addition, there
also exists the other novel approaches for controlling the integrat-
ing and unstable systems, such as the eigenvalue-loci technique
[11] and the enhanced cascade control scheme [12].

In these forementioned works, it is obvious to note that most of
the reported processes are only with the unstable term or the inte-
grating one. And for several cases the existed stable poles may ease
the regulatory task by assigning the predominant pole of the closed-
loop system. To the best of the authors’ knowledge, only [8,7] obtain
the valid results for the integrating unstable delay processes with
the complex structures. Motivated by the above observation, the
further effective stabilizing research is deserved for the integrating
unstable delay process.

In recent years, authors of this note were devoted to develop-
ing new algorithms in controlling of unstable processes. In [13,14],
mirror mapping method is first developed as a new tool for control
design of the regular unstable system. The unstable poles (or zeros)
are mirror mapped onto the left half plane so that the unstable
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plant is transformed into a minimum-phase system. It is noted that
the largest singular value curves of unstable processes are identical
before and after the mirror mapping operation. Therefore, the con-
trol law has equal robustness to both the unstable process and the
mirror mapping process by applying the closed-loop gain shaping
algorithm (CGSA) [15,16]. However, the mirror mapping technique
could not be directly used for the pure unstable process. In [17],
the control problem of the pure unstable system was solved by
neglecting the time delay, and a component with zeros and poles
in the left half plane was introduced to convert the pure unstable
system into a regular one, which is difficult to choose. The result
in [18] was to design a controller for unstable process with dual
poles (i.e.(s + ω1)(s − ω1)) in the denominator, which had been used
into the maglev train with satisfactory performances. And [19,20]
solved the control problem of static unstable missile with dual
poles and dual zeros (i.e. [(s + �1)(s − �1)]/[(s + ω1)(s − ω1)]) using
the mirror mapping method.

In this note, a novel robust control design is derived for the inte-
grating unstable delay process using the mirror mapping technique
and CGSA. The time delay term is transformed as a stable compo-
nent by means of the all-pole Padé approximation, and the Nyquist
criteria establishes the exact stabilization of the closed-loop sys-
tem.

2. Problem formation and preliminaries

In this note, one devotes to developing the stability analysis and
effective design via the simple control structures, i.e. the unit out-
put feedback scheme given in Fig. 1. r is the reference signal, d1
is the load disturbance, d2 is the output disturbance. The trans-
fer function of unstable plus integrating time delay system has the
form of (1). p is the Laplace operator of the transfer function, which
is employed to distinguish the normalized one “s” in (2). Following
[4], the normalization (2) is adopted to illustrate the stabilization
problem with fewest possible parameters. The normalized plant
and controller of interest are given in (3), where L = �d/�≥0. Eq.
(3) would also be used to derived the actual control law C (s) in the
practical industry.

G(p) = k

p(�p − 1)
e−�dp, k > 0, � > 0, �d≥0 (1)

C(p)G(p) = C(p)
k

p(�p − 1)
e−�dp,

(s = �p) ⇒ k�C
(

s

�

)
1

s(s − 1)
e−Ls = C(s)G(s)

(2)

G(s) = 1
s(s − 1)

e−Ls, C(s) = k�C
(

s

�

)
(3)

Using the 1st/2nd all-pole Padé approximation (4), the time
delay term in (3) is approximated without introducing the
unwanted positive poles or zeros. Whereas, the other Padé meth-
ods detailed in [21,22] would introduce the undesired positive pole
(or zero) into the approximated system, e.g. e−Ls ≈ (2 − Ls)/(2 + Ls),
e−Ls ≈ (1 − 0.6143Ls + 0.1247L2s2/2)/(1 + 0.3866Ls).  Finally, the

Fig. 1. The unit output feedback scheme.

corresponding approximated system models (5) are obtained for
the following control design.

1st order approximation,e−Ls ≈ 1
Ls + 1

2nd order approximation,e−Ls ≈ 1
((L2s2)/2) + Ls + 1

(4)

GA1 (s) = 1
s (s − 1) (Ls + 1)

GA2 (s) = 1

s (s − 1)
(

((L2s2)/2) + Ls + 1
) (5)

In order to use the Nyquist stability criteria, the open-loop trans-
fer function Q (s) should be expressed as the following (6).

Q (s) = C (s) G (s) = KN (s)
svD (s)

e−Ls (6)

where K is the gain, v≥0 represents the type of the loop.
N (s) , D (s) are the corresponding numerator/denominator polyno-
mials of s with N (0) = D (0) = 1. Lemma  1 presents the Nyquist
stability criterion applying to the open-loop transfer function (6).
The Nyquist contour is with the symmetry property to the real axis.
Therefore, subsequent analysis focuses on the positive frequency
ω ∈ (0, +∞).

Lemma  1. Given the open-loop transfer function Q (s) in (6) with P+

unstable poles, the closed-loop system is stable [3]

(1) if and only if the Nyquist plot of Q (s) encircles the critical point
(−1, 0)P+ times anticlockwise.

(2) only if lim
ω→∞

∣∣Q (jω)
∣∣ < 1.

(3) only if K < −1 when P+ = 1, v = 0, or K < 0 when P+ = 1, v = 1, 2.

(4) only if the polynomial,  H (s) = e−Ls dm+1

dsm+1

[
svD (s) eLs

]
, has all roots

in the open left half plane, where m is the degree of N (s).

2.1. CGSA and the mirror-mapping technique

CGSA is a simplified H∞ mixed sensitivity algorithm [15,16] by
shaping directly the singular value curves of the sensitivity func-
tion S(S = 1/(1 + GC)) and the complementary sensitivity function
T(T = GC/(1 + GC)) shown in Fig. 2, and there exists the correlativity
T = I − S between S and T. According to the H∞ robust control theory,
the closed-loop frequency spectrum of a typical control system, i.e.
T, has a low pass characteristics to guarantee the robust perfor-
mance, and the largest singular value equals to unit one to follow

Fig. 2. Typical S & T singular value curves.
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