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a  b  s  t  r  a  c  t

Soft  sensors  are  used  to  predict  response  variables,  which  are  difficult  to measure,  using  the  data  of
predictors  that  can be  obtained  relatively  easier.  Arranging  time-lagged  data  of predictors  and  applying
partial  least  squares  (PLS)  to the dataset  is a popular  approach  for extracting  the  correlation  between  data
of the  responses  and  predictors  of  the  process  dynamic.  However,  the  model  input  dimension  dramatically
soars  once  multiple  time  delays  are  incorporated.  In addition,  the  selection  of  variables  in  the  dynamic
PLS  (DPLS)  model  is  a critical  step  for the  robustness  and  the  accuracy  of the inferential  model,  since
irrelevant  inputs  deteriorate  the prediction  performance  of the  soft  sensor.  The  sparse  PLS  (SPLS) is a
variable  selection  method  that simultaneously  selects  the  important  predictors  and  finds  the correlation
between  the predictors  and  responses.  The  sparsity  of  the  model  is  dependent  on  a cut-off  value in
the  SPLS  algorithm  that  is  determined  using  a cross-validation  procedure.  Therefore,  the threshold  is a
compromise  for  all latent  variable  directions.  It is  necessary  to  further  shrink  the  inputs  from  the  result  of
SPLS  to obtain  a more  compact  model.  In the  presented  work,  named  SPLS-VIP,  the  variable  importance  in
projection  (VIP)  method  was used  to  filter  out the insignificant  inputs  from  the  SPLS  result.  An  industrial
soft  sensor  for  predicting  oxygen  concentrations  in  the  air separation  process  was  developed  based  on
the  proposed  approach.  The  prediction  performance  and the  model  interpretability  could  be  further
improved  from  the  SPLS  method  using  the  proposed  approach.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In industrial processes, operators adjust manipulated variables
to maintain product qualities or exhaust gases within the speci-
fications of the product or government regulations, according to
online analyzers and laboratory tests. However, online analyzers
can malfunction, and there can be significant delays during labora-
tory testing; therefore, soft sensors that infer the primary output
from other process variables can provide useful information for reg-
ulating process operations. Soft sensor applications have attracted
significant attention in the process industry [1]. There are two
main categories of soft sensor development: first-principle mod-
els and data-driven models. A first-principle physical model can be
obtained from the fundamental process knowledge. However, due
to the complexity of the manufacturing process, such fundamental
models either require a lot of effort and time to develop, or are too
simplistic to be accurate in practice. On the other hand, data-driven
models provide accurate information for a particular operation
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region by multivariate regression methods [2] such as: principal
component regression (PCR), partial least squares (PLS) and canon-
ical coordinates regression (CCR). Such models are usually linear,
therefore they lack the ability to extrapolate into different operat-
ing regions. To cover a wide range of operations, nonlinear models
may  be used, such as artificial neural networks (ANN) [3], sup-
port vector machines (SVM) [4] and kernel partial least squares
(KPLS) [5]. However, the above-mentioned soft-sensing techniques
are based on the assumption that processes are operating at steady
states. The static soft sensors may  suffer accuracy and robustness
difficulties when the process dynamics dominating; such as: tran-
sitions between operating modes, disturbance rejections, and so
on. Therefore, the dynamic correlations between inputs and out-
puts need to be concerned for developing a reliable soft sensor.
In most industrial processes, the sampling rate of primary output
is usually less frequent than that of process variables; thus, it is a
challenging task to estimate the process dynamics based on the
data-driven approaches. Lin et al. [6] integrated the data lifting
method [7] and a weighted partial least-squares (WPLS) to develop
a quality estimator for predicting the amount of free lime (CaO) in
the clinker based on the multiple-rate sampled data, which were
collected from a cement kiln process. Lu et al. [8] modified the
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differential evolution (DE) algorithm to estimate the parameters
of finite impulse response (FIR) template, which is a combination
of second-order transfer functions with time delays to describe the
dynamic relations between inputs and output, for capturing the
process dynamics from the two-rate samples. More recently, Shang
et al. [9] improved the work of Lu et al. [8] based on a Bayesian
framework by incorporating FIR and SVM to deal with the pro-
cess dynamics and nonlinearity, respectively. In their approach,
the parameters of FIR and SVM were optimized according to the
Bayesian inference; meanwhile, the logarithm of total probability
was referred to as the evidence to examine whether the model
was overfitted; therefore, the validation dataset was not neces-
sary. However, Shang et al. [9] assumed that the process variable
dynamics can be described by a first-order model with time delay;
therefore, the time delay and the time constant for each process
variable should be determined. In chemical processes, using dozens
of inputs to develop a soft sensor is common. In this situation, the
FIR approach [9] may  encounter a heavy-computational-loading
difficulty.

The PLS algorithm is a popular multivariate statistical tool for
modeling data of the predictor and response variables. It has been
proven that the maximal covariance between two datasets can
be captured by PLS [10]. However, the dynamic characteristic of
a process cannot be neglected when developing a soft sensor.
Dynamic PLS (DPLS) has been widely applied in the design of
dynamic models for process control [11,12] and in the develop-
ment of soft sensors for batch processes [13,14]. For a continuous
process, the input variables of DPLS are formed using the pre-
sented data and some time-lagged data of the predictor variables.
However, it is often unclear if the response variables are affected
by the length of the predictors’ delay, and how to determine the
predictor time lags for the DPLS model remains an open ques-
tion. Kano et al. [15] evaluated the model performances of the
predictors using different sampling intervals, and then collected
the data with better modeling performances to form the training
dataset to build the inferential model. Kaneko and Funatsu [16]
proposed using the time difference data for modeling a soft sensor
in order to eliminate the effects of drift and gradual changes for
process data. In order to capture the process dynamics, the data
of predictors were prepared according to the time differences, in
which the current data were differentiated with the data from the
different sampling intervals. Since the dimension of the input vari-
ables dramatically increases with the order of the modeling time
lags, a high-dimensional dataset can easily be formed once several
time delays are incorporated. The high-dimensional dataset often
contains data of predictors that are irrelevant for predicting the
variations of response variables. For example, when the data of pre-
dictors are later than the corresponding time delays to the response
variables, these data are irrelevant for predicting the current out-
puts of response variables. Since the time delay of each predictor is
usually unknown, the training dataset of DPLS inevitably contains
these irrelevant data for predicting the outputs. Even if the con-
tribution to the model is small, the prediction performance can be
deteriorated by these irrelevant data of predictors. In the perspec-
tive of DPLS modeling method, these irrelevant data of predictors
are called the irrelevant variables.

If the modeling data contain a massive number of irrelevant
predictors, the latent variables (LVs) of PLS will tend to capture
the variances of that predictors rather than those of the responses
[17,18]. Since PLS captures the covariance between the predictors
and the responses, it is inevitable that the latent structure will be
affected by variations of the predictors. Helland [18] illustrated that
the model prediction errors will be large when the number of pre-
dictors is excessive by comparing the regression parameter and the
estimator, in which the former represents the real model and the
latter is obtained using a limited number of data. Therefore, in order

to reduce the number of predictors for enhancing the prediction
performance of the PLS model, several variable selection methods
have been developed, as shown in the literature.

In the PLS algorithm, the weight vector (w) is successively found
by maximizing the covariance of the deflation data of predictors and
responses. The smaller values in the weight vector represent that
the corresponding predictors are less correlated with the responses.
Therefore, a threshold was  set to filter out the insignificant pre-
dictors and the final regression model was performed using the
retained predictors, named intermediate least squares (ILS) [19]. A
similar concept for variable selection was applied to the regression
coefficients of the PLS model [20]. In [20], the authors concluded
that the wavelength selection of spectroscopic data significantly
improved the model prediction ability, since only some variables
are relevant for the prediction. Wold et al. [21] introduced the
measure of variable importance in projection (VIP) that evaluated
the captured variance of response by each predictor on the latent
space. Chong and Jun [22] recommended the range of cut-off val-
ues to the VIP scores, in which the threshold may  be higher than
one for the high portion of irrelevant variables, and vice versa. In
addition, they also reported that the variables selected using the
regression coefficients (PLS-Beta) and the VIP scores (PLS-VIP) were
complementary. A combination of PLS-VIP and PLS-Beta for vari-
able selection should provide fewer variables for prediction. In the
review paper [23], the above-mentioned methods were categorized
to the filter methods for the variable selection of PLS.

Other than the filter methods, the input variables were classified
into several subsets based on a number of criteria. For each subset,
a model was built and the prediction performance was evaluated.
Thus, the predictors of the final model could be collected from
the subsets that have better prediction performances. For exam-
ple, Arakawa et al. [24] applied the genetic algorithm (GA) to select
the wavelength of near-infrared (NIR) spectral data for modeling
soil properties and the sugar content of apples. The wavelength of
the spectral data was divided into several subintervals. The fitness
values of combining the subinterval wavelength were calculated
using PLS, in which the root mean squared error of cross-validation
(RMSECV) value was used to justify the model performance. It is
well known that the GA search is a time-consuming randomized
search. In addition, the number of subintervals or the initial pop-
ulation of chromosomes are the critical parameters for GA-based
PLS [25]. However, the issue of the initial subintervals, which deter-
mine the resolution of the selected variables, is not addressed in
the GA approaches. Reinikainen and Höskuldsson [17] proposed
covariance procedures (COVPROC) for variable selection in the PLS
regression. In their approach, the training dataset was  divided into
several subsets according to the predictors and the time periods
of data collection. For each subset, the important predictors were
selected according to the largest magnitudes of weights, which
were the absolute values in the eigenvector of covariance between
the predictors and the responses in the corresponding PLS model.
Since the covariances may  be different for the subsets, the selected
variables for each subset may  not be consistent. They concluded
that the models developed using the COVPROC method should not
be used for predicting the present response values and that the
models could be used to understand the dynamic characteristics
of processes. More recently, Fujiwara et al. [26] applied the near-
est correlation spectral clustering (NCSC) method to screen the
input variables for PLS modeling. The input variables with a simi-
lar correlation were classified into a subset. For each subset, a PLS
model was built to evaluate the fitness using the contribution ratio,
which was  defined according to the measurements and the esti-
mates of the response variables. The final PLS model was then built
using the subsets that had models with higher ranking contribu-
tion ratios. The approach was based on the variables in the same
subset having the same contribution to the responses. However,
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