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a  b  s  t  r  a  c  t

The  cascade  control  is a  well-known  technique  in process  industry  to  improve  regulatory  control  perfor-
mance.  The  use  of the conventional  PI/PID  controllers  has often  been  found  to  be  ineffective  for cascade
processes  with  long  time-delays.  Recent  literature  report  has  shown  that  the  multi-scale  control  (MSC)
scheme  is capable  of  providing  improved  performance  over  the  conventional  PID controllers  for  pro-
cesses  characterized  by  long  time-delays  as well  as  slow  RHP  zeros.  This  paper  presents  an  extension
of  this  basic  MSC  scheme  to cascade  processes  with  long  time-delays.  This  new  cascade  MSC  scheme
is  applicable  to self-regulating,  integrating  and unstable  processes.  Extensive  numerical  studies  demon-
strate  the  effectiveness  of the  cascade  MSC  scheme  compared  with  some  well-established  cascade  control
strategies.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

One of the most common control strategies adopted in process
industry in order to improve disturbance rejection performance is
the cascade control strategy introduced in [1]. Many process control
textbooks advocate the benefits of cascade control strategy, i.e., see
[2–4]. One of the well-known benefits of cascade control strategy is
the ability to correct for certain disturbances in advance before they
can seriously influence the primary or main controlled variable.

One well-known example of cascade control application is in
reactor temperature control, e.g., polymerization reactor [5]. Here,
the cascade control strategy uses the jacket reactor temperature
as an extra measurement (secondary output). The role of the sec-
ondary controller is to quickly reject any disturbance that initially
affects the jacket reactor temperature before the disturbance can
seriously affect the primary reactor temperature.

A number of researchers have extensively studied the applica-
tions of cascade control scheme to single-input and single-output
(SISO) stable processes, e.g., see works by [6–10]. However, much
fewer number of researchers have focused on the design of cascade
control strategies for unstable or integrating processes with long
time-delays. The design of cascade control for these types of pro-
cesses has been known to be a challenging task due to the presence
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of unstable modes and delays, which often impose limitation on
the achievable control performance. For stable (non-cascade)SISO
processes with time-delays, one can improve the regulatory con-
trol performance by using the classical Smith predictor [11].
Interestingly, some researchers have also proposed extensions of
the classical Smith predictor to SISO non-self-regulating (inte-
grating/unstable) processes, e.g., see works on modified Smith
predictors in [12–14]. Additionally, several cascade control strate-
gies based on the Smith predictor have also been developed
for non-self-regulating processes with time-delays. Among these
cascade control strategies based on the Smith predictor are the
schemes reported in [15–21]. It should be noted that, the existing
modified Smith predictor schemes for the unstable and integrating
cascade processes require the design of several controllers. Hence,
these Smith predictor-based cascade control systems are rather
difficult to design and implement in practice.

In this work, we  present a new cascade control strategy con-
structed based on the SISO multi-scale control (MSC) scheme
recently reported in Nandong and Zang [22,23]. The key princi-
ple of the MSC  scheme is to decompose a given plant into a sum
of basic modes with distinct speed of responses. It follows that an
individual sub-controller is specifically designed to control each of
the plant modes. Finally, an overall multi-scale controller is synthe-
sized by combining all of the sub-controllers in such a way  that the
faster sub-controller is used as a slave to a slower sub-controller;
in other words, the sub-controllers are assembled in a cascaded
manner. The rationale behind this cascaded combination of all the
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sub-controllers is to enhance the cooperation among the different
plant modes in order to optimize the overall control performance.
The works by Nandong and Zang [22,23] have demonstrated that
this MSC  scheme is able to provide improved nominal performance
as well as performance robustness over some well-established con-
trol schemes for the nonminimum-phase (NMP) processes. The
main novelty of the present work is to extend this SISO MSC scheme
to cascade processes which are characterized by long time-delays,
where the processes could be stable or integrating or unstable.

The rest of this paper is laid out as follows. In Section 2, some
relevant preliminaries are presented. We  also describe the basic
idea of the multi-scale control (MSC) scheme for a single-input
and single–output (SISO) process. Then in Section 3, we  present the
extension of this basic MSC  scheme to cascade processes as well as a
general controller design procedure. Section 4 provides some illus-
trative examples to demonstrate the effectiveness of the proposed
cascade MSC  scheme as compared to some well-established cas-
cade control schemes. Section 5 finally highlights some concluding
remarks and future works.

2. Preliminaries

2.1. Standard cascade control strategy

Fig. 1 depicts the block diagram of a standard (conventional)
cascade control scheme, which consists of a secondary process P2
cascaded with a primary process P1. Note that, for the cascade con-
trol scheme to work effectively, the secondary control-loop must
be faster than the primary control-loop. With respect to Fig. 1, the
secondary controller Gc2 is often referred to as a slave controller
while the primary controller Gc1 as a master controller. Here, D1
and D2 represent the input and output disturbance (w.r.t. secondary
process) signals, respectively.

Based on Fig. 1, the closed-loop transfer function from the mas-
ter controller output E to the secondary process output Y2 is given
as

HRS = Y2

E
= Gc2P2

1 + Gc2P2
(1)

Meanwhile, the closed-loop transfer function from the external
setpoint R to the primary process output Y can be expressed as
follows

HRP = Y

R
= FrGc1HRSP1

1 + Gc1HRSP1
(2)

where Fr denotes the setpoint pre-filter. The setpoint pre-filter
is normally a first order transfer function with a unity gain. The
filter time constant can be tuned to give a desired setpoint track-
ing response, e.g., to achieve a desired overshoot for setpoint
tracking.

Fig. 1. Conventional two-level cascade control strategy.

2.2. Plant decomposition

Consider a rational transfer function P (with numerator N and
denominator D), which can be decomposed via partial fraction
expansion into a sum of n + 1 factors or modes as follows:

P = N

D
= P0 + P1 + P2 + . . . + Pn (3)

where Pi, ∀ i ∈ {0, 1, 2, . . .,  n} is the plant factor or mode, which is
either a first- or second-order system with real coefficients. The
plant factors in (3) are arranged from the slowest factor P0 to the
fastest Pn, i.e. the dynamic of Pi is slower than that of Pi+1 for i = 0,
1, 2, . . .,  n − 1. Here, P0 is called the outermost factor and Pi, ∀ i ∈ {1,
2, 3, . . .,  n} the inner-layer factor.

2.3. Deadtime approximation

When a given plant model contains a deadtime or time-delay
component, the time-delay component is first approximated by a
rational transfer function before the plant decomposition is per-
formed as in (3). One of the approximation approaches for the
deadtime component is based on the Padé rational approximation
[24]:

e−�s ≈ Gtd = Ln(−s)
Ln(s)

(4)

where

Ln(s) =
n∑

j=0

(
n

j

)
�j(2n  − j)!

(2n)!
sj =

n∑
j=0

�j(2n  − j)!n!
(2n)!(n  − j)!j!

sj (5)

The first-order or 1/1 Padé formulae is often sufficient for many
practical applications

e−�s ≈ Gtd = 1 − (�/2)s
1 + (�/2)s

(6)

After approximating the time-delay using either (4) or (6), one
can then decompose the approximated plant model as follows

Pm = Pmoe−�s ≈ PmoGtd = P0 + P1 + . . . + Pn (7)

where Pmo denotes the delay-free part of the plant model Pm and �
the time-delay.

2.4. Fundamental of multi-scale control scheme

Fig. 2 shows the realization block diagram of a 2-layer multi-
scale control (MSC) scheme for a single-input and single-output
(SISO) process; see [22,23] for further details. The block diagram
shown in Fig. 2 implies that the given plant P can be decomposed
into a sum of 2 factors or modes with distinct speeds of responses
(time-scales) to a similar input. Here, K0 and K1 denote the sub-
controllers corresponding to the outermost and inner-layer factors,
respectively; W1 is called the multi-scale predictor.

For the 2-layer MSC  scheme (Fig. 2), the multi-scale predictor is
chosen as

W1 = P̄1 (8)

where P̄1 denotes the nominal model for the plant factor P1. The
inner-loop of the MSC  scheme (Fig. 2a) can be reduced to a standard
single-loop feedback control (Fig. 2b). Based on Fig. 2b, we can write
the closed-loop inner-layer transfer function as follows

G1 = K1

1 + K1W1
(9)

The augmented overall plant transfer function is given by

Pc = G1P (10)
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