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a  b  s  t  r  a  c  t

Gradient-based  optimization  may  not  be suited  if the  objective  and  constraint  functions  in  a nonlin-
ear  model  predictive  control  (NMPC)  optimization  problem  are  not  differentiable.  Some  well-known
derivative-free  optimization  (DFO)-algorithms  are  investigated,  and  a novel  warm-start  modification  to
the  Wedge  DFO-algorithm  is  proposed.  Together  with  a gradient-based  SQP-algorithm  these are  applied
to  the NMPC  problem  and compared  in a  single-shooting  NMPC  formulation  to  a subsea  oil–gas  separation
process.  The  findings  are  that  DFO  is  significantly  more  robust  against  the  numerical  issues,  compared
to  a gradient-based  SQP  tested.  Moreover,  the  warm-start  modification  reduces  the  computational  com-
plexity.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

In the later years nonlinear model predictive control (NMPC)
has attracted much attention, as the use of non-linear models
improve the controller performance on highly non-linear systems
and allows for operation over wider range.

A common method for solving an NMPC problem is by lineariz-
ing the model about the previous optimal trajectory, referred to as
the nominal trajectory. This approximate model can be optimized
as in linear model predictive control (MPC), and a new lineariza-
tion is performed in the next time step about the updated nominal
trajectory. This however makes the model only valid for small per-
turbations from its nominal trajectory, and e.g. if the set-point is
changed rapidly, then more accurate prediction of larger trans-
ients may  be desirable. Today it seems that state-of-the-art to
overcome this is sequential-quadratic programming (SQP) [13] and
interior-point (IP)-methods [8]. Common for both is that they iter-
atively linearise the model and the constraints until convergence
is achieved, which in turn requires the gradient of the model. If
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the model is known explicitly, an off-line symbolic differentiation
can be performed and the gradient and possibly the Hessian can be
implemented.

However, this may  not always be the case, as the model may
not be available in an appropriate programming language, it can
be made up of a mix  of subroutines from different program-
ming languages or the source can simply be unavailable. This will
render the symbolic software hard or impossible to apply. The
model may  not even be continuous or smooth, as logic opera-
tors are common, and the model may  not be explicitly available
at all as it may  be embedded in a numerical simulation software
[16]. In these cases it is likely that the most common and intu-
itive approach is to retrieve the gradient from finite-differences.
This method is however known to be sensitive towards numeri-
cal issues [19]. When performing the simulation it can be desirable
to use a variable-step ordinary differential equation (ODE)-solver.
This can speed up the simulation time significantly, however it is
known that this tends to induce numerical noise and discontinu-
ities, which possibly can be amplified through finite-differences
and thus compromise the performance of a gradient-based NMPC
optimization. This motivates for investigating optimization meth-
ods not requiring derivatives, namely derivative-free optimization
(DFO).
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DFO has been applied in NMPC in several occasions, by use
of genetic algorithms (GA) [5,17,1,24,4]. However in these cases
the goal has been to overcome extreme non-linearities. Although
GA is known to be well-suited towards noise and discontinuities
it also tends to have slow convergence rate. Tlili et al. [26] used
the Nelder-Mead simplex method for solving a highly non-linear
NMPC problem and reported that it was 10 times faster than GA,
and Sadrieh and Bahri [23] used parallel computing on a Graph-
ics Processing Unit (GPU) GPU to obtain even faster computation.
These did however suggest to try other optimization methods and
more practical problems. Koller and Ulbrich [11] reported that a

Derivative-free Trust-region method (DFTRM) out-performed the
Nelder-Mead method in an optimal-control problem, however the
exact nature of the optimization problem was not stated. DFTRM
is also known to require less function evaluations than algorithms
as Nelder-Mead and GA [16], thus investigating the use of these
methods in NMPC aimed at controlling a realistic process seems
appropriate.

The main contribution of the paper is an evaluation of the per-
formance and robustness of DFTRM for NMPC, performed by a
case-study of a challenging sub-sea oil and gas separation process.
Another significant contribution is a novel warm-start procedure
that aims to improve computational performance, which is pre-
sented and evaluated using the case-study.

The rest of the paper will be structured as follows:

• Section 2 briefly presents the single-shooting formulation of the
NMPC problem.

• Section 3 gives a short description of DFTRM, investigates some
existing and well-known DFO algorithms, and a novel warm-start
procedure is presented.

• The case study of an industrial sub-sea crude-oil separation
unit is presented in Section 4. The objectives of the controller
is also presented, and the resulting NMPC problem is analysed.
The closed-loop system is simulated using DFO algorithms, a
gradient-based SQP-algorithm and the warm-start modification.
The results are summarized and discussed.

• Section 5 concludes the findings.

For more details on the algorithms, implementation and the
simulations, the reader is referred to [7].

2. Nonlinear model predictive control formulation

The single-shooting approach to NMPC is based on parametriz-
ing the objective function of the optimization problem in the input
sequence(i.e. the Manipulated variables (MV)) and the current state
of the system. This approach is well suited when the prediction
model of the plant is a simulation, i.e. the solution to an initial value

problem using an ODE-solver to a piecewise constant control input
sequence [u(0), . . .,  u(k − 1)]

[x(1), . . .,  x(K̂)] = �(u(0), . . .,  u(K − 1),  x(0), K) (1)

where K is the discrete length of the control horizon and x(0) is
the current state of the plant. The left-hand side of (1) is then the
resulting trajectory of the states of the model from time step 1
to K̂ . Note that if a variable-step solver is used, K is likely to be
different from K̂ .  Considering an objective function on the form
J(x(1), . . .,  x(K̂), u(0), . . .,  u(K − 1)), which is common in NMPC, the
complete single-shooting NMPC problem can be stated

The definition of J(u ; x(0) ; K) is to illustrate that there are only
the input blocks that are manipulated variables (MV). Note that
because of input blocking, the number of MV will be less than K,
however this is not considered in (2) for simplicity of notation.
Clearly neither the objective function not the constraints may  not
be convex. Applying SQP or IP methods will somehow need to make
a linear and/or quadratic approximation of the objective function
and the constraints to approximate (2) with a Quadratic Program-
ming (QP) problem, thus requiring the gradient of J(u ; x(0) ; K) and
the constraints. As mentioned initially, the prediction model may
not be differentiable, thus this process may  become troublesome.

3. Derivative-free trust-region methods

This section is aimed at giving a working understanding of
DFTRM, and a description of the main differences between the algo-
rithms which is used in this study. A more extensive introduction
can be found in [6], and in papers referenced in the subsection for
each algorithm.

DFO algorithms comes in a vast number of types and varieties. A
common characteristic of these methods are that they start with an
initial set of samples Y ⊂ R

n of the objective function f : R
n �→ R

1 in
order to approximate it, and creates new points by trying to figure
out where the optimum of f(x) is by looking at the positions of yi,
i ∈ [1, m]  and the resulting function values f(yi), i ∈ [1, m].  When
applied to NMPC, f(x) is typically constructed from J(u ; x(0) ; K) and
(2c)–(2e) applied through penalty functions.

Algorithm 1 describes a simplified DFTRM, which is based on
making a polynomial model q(x) of the true objective function f(x)
around the current iterate xk, with k being the iteration index.

The algorithm needs enough samples initially to build the model
q(x) in the first iteration. There exist several different interpola-
tion techniques, which requires different number samples. A fully
determined model requires m = 1

2 (n + 1)(n + 2) samples, n being
the number of decision variables. Because of the large computa-
tional resources required for this, it is a challenge to handle this in
many real-time applications.

In step 2 the polynomial model q(x) is made from Y and its cor-
responding function values by solving a set of equations to find the
unknown coefficients in q(x). In this paper, a quadratic model is
chosen, since optimality conditions are then simple, and analysis
of the optimization problem presented in Section 4 suggests that
the objective resembles a quadratic function.
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