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a  b  s  t  r  a  c  t

Adaptive  and  robust  methods  are  two  opposite  strategies  to  be  adopted  in  the  Kalman  filter  when  the
difference  between  the  predictive  observation  and  the  actual  observation,  i.e. the  innovation  vector  is
abnormally  large.  The  actual  observation  is  more  weighted  in the former  one,  and  is less  weighted  in the
later  one.  This  article  addresses  the subject  of  making  a choice  between  the  adaptive  and  robust  methods
when abnormal  innovation  occurs.  An  adaptive  method  with  fading  memory  and  a  robust  method  with
enhancing  memory  is proposed  in  the  Kalman  filter  based  on  the  chi-square  distribution  of  the square
of  the  Mahalanobis  distance  of  the innovation.  A heuristic  method  of  recursively  choosing  among  the
adaptive,  the  robust,  and  the standard  Kalman  filter  approaches  in the  occurrence  of abnormal  innova-
tions  is  proposed  through  incorporating  the observations  at the  next  instance.  The  proposed  method  is
both  adaptive  and  robust,  i.e. having  the  ability  of  strongly  tracking  the  variation  of  the  state  and  being
insensitive  to gross  errors  in observation.  Numerical  simulations  of a  simple  illustrating  example  validate
the efficacy  of the proposed  method.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Kalman filter (KF) has been applied in many areas such as signal
processing, GPS positioning, integrated navigation, target tracking,
and so on. Although there was no assumptions about Gaussian
distributed process and measurement noises, and linear state and
measurement functions in the seminal paper [1], it can be proven
that KF is optimal in the sense of being unbiased, consistent, and
asymptotic efficient only when the above assumptions hold [2].
Under the Gaussian assumption, the innovation, i.e. the difference
between the predictive observation and the actual observation
at an arbitrary instance, say k, should be a zero-mean Gaussian
distributed stochastic vector, and the square of the Mahalanobis
distance of the innovation, defined as the judging index in this
contribution, should be �2 distributed with the dimension of the
observation as its degree of freedom. According to the hypothesis
testing theory, for this �2 distribution, given a significance level,
say ˛, which is predetermined as a small value, the judging index
should be smaller than the ˛-quantile with the probability 1 − ˛
which is a high probability as  ̨ is assumed a small value. If it is
not the case, it could be concluded with the same high probabil-
ity (1 − ˛) that there are some kinds of violation to the a priori
assumptions.

Generally speaking, those violations may  be due to modeling
errors and/or gross errors. The model errors fall into two  categories,
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i.e. functional and stochastic model errors. The functional model
errors may  be due to some sudden variation of parameters includ-
ing the discontinuous changes of the states and/or the system
parameters. The stochastic model errors are due to the incorrect
knowledge of the statistics of the process and/or measurement
noises. Both the functional and stochastic model errors can be dealt
with using some kind of adaptive method, in which the varying
parameters or incorrect statistics are recursively tuned to accord
with the actual incoming observations. The gross errors, which
show themselves as outliers, may  occur in the state prediction
and/or update stages. It is noted that outliers may not necessarily
be gross errors implying some outlying data can still be good ones.
However, redundant information is always unavailable to detect
gross errors, while outliers can be distinguished relatively easily,
so outliers, other than gross errors are addressed in most practical
problems. In this distribution, it is our basic assumption that an
outlier is due to gross errors. Those gross errors are often due to
random hardware failures or man-made mistakes, and are often
dealt with using robust method, in which the influence of those
outliers are reduced. In this study, only the sudden variation of
the states and the gross error in the measurement are involved to
represent the above mentioned two  kinds of violations.

There are many kinds of adaptive and robust methods in Kalman
filtering in the literature. Fading memory filters [3], covariance
matching filters which matches process noise covariance, or mea-
surement noise covariance, or both [4], Gauss sum filters [5],
interactive multiple model filters [6], are some of the familiar
ones. Robust methods include median estimates [7], H∞ filters
[8], federated filters [9], measurement-noise-inflating filters [10],
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filter-gain-rescaling filters [11], M-estimation based filters [12,13],
among others. In this paper two simple but effective methods are
adopted, i.e. fading memory filter to make the filter adaptive and
measurement-noise-inflating filter to make the filter robust, and a
heuristic method of making a choice recursively among the adap-
tive, the robust, and the standard KF is proposed.

The remaining of the paper is organized as follows, in Section 2,
the problem is formulated and the available adaptive and/or robust
method is reviewed. In Section 3, an adaptive method with fading
memory and a robust method with enhancing memory both based
on the �2 distributed judging index are proposed, and a new scheme
to recursively select among adaptive, robust, and standard strate-
gies in KF is proposed. In Section 4, single-axis INS/GPS integration
is simulated to justify the method proposed. Conclusions are made
in Section 5.

2. Problem formulation

Below, the symbols “̂’’ and “∼” above a variable represent an
estimate and a measurement; the superscripts “−” and “+” repre-
sent the a priori and a posteriori estimates respectively; N(x, �, P)
denotes that the variable x obeys Gaussian distribution with mean
� and covariance P.

Consider the discrete-time linear stochastic state space model
with Gaussian distributed process and measurement noise,

xk = Fk−1xk−1 + wk−1 (1)

yk = Hkxk + vk (2)

where xk is the n-dimensional state vector at time instance k and
is to be estimated. The symbol yk is the m-dimensional observa-
tion vector which can be measured at time instance k. The symbols
Fk, Hk are the n × n and m × n dimensional propagation matrix
and observational matrix respectively. And wk, vk are process
and measurement noises respectively, both of which are zero-
mean uncorrelated Gaussian white noise satisfying E[wkwT

j
] =

Qkıkj , E[vkvT
j
] = Rkıkj , E[wkvT

j
] = 0, where Qk and Rk are the corre-

sponding covariances, and ıkj is the Kronecker delta function. The
initial state estimation is assumed to be Gaussian with mean x̂+

0
and covariance P+

0 , and uncorrelated with any process and mea-
surement noises.

Systems (1) and (2) are solved by KF to give the a posteriori esti-
mate of xk given the observations ỹ1, ỹ2, · · ·, ỹk. The KF equations
are as follows:

x̂−
k

= Fk−1x̂+
k−1 (3)

P−
k

= Fk−1P+
k−1FT

k−1 + Qk−1 (4)

�k = ỹ − Hkx̂−
k

(5)

P�k
= HkP−

k
HT

k + Rk (6)

Kk = P−
k

HT
k (P�k

)−1 (7)

x̂+
k

= x̂−
k

+ Kk�k (8)

P+
k

= P−
k

− KkHkP−
k

(9)

where Kk is the KF gain at instance k, and �k is the innovation vector
stated above.

If the assumptions about (1) and (2) hold, the innovation
�k should be zero-mean Gaussian-distributed with covariance
HkP−

k
HT

k
+ Rk, so the square of the Mahalanobis distance of the

innovation should be �2 distributed, i.e.

M2 = �T
k (P�k

)−1�k∼�2
m (10)

According the hypothesis testing theory, for a given significance
level, say ˛, we have

Pr(M2 < �2
m,˛) = 1 −  ̨ (11)

where Pr(·) represents the probability of a random event and �2
m,˛

is the ˛-quantile of the distribution �2
m.

If (11) does not hold, it can be concluded with high probability
(1 − ˛) that there are some violations to the assumptions about the
system, e.g. a discontinuous change of the state xk or some gross
errors in the observation ỹk. In this case, we call the innovation �k
abnormally large, or abnormal for brevity. Attention should be paid
that the so called “abnormal innovation” here is just an expression
without any statistical meaning, or in other word, it does not nec-
essarily mean that this innovation is not a normally, or Gaussian
distributed random variable.

Fading KFs work on the prerequisite that the actual observa-
tions are correctly obtained. The abnormal innovation implies that
there are certain modeling errors which violate the normal oper-
ation of KF, in this paper only the discontinuous variation of the
state is assumed to represent such modeling errors. Some kind of
fading factors could be used to rescale the weights of the predictive
state estimation so as to adapt the filter to the actual observation,
i.e. by enlarging P−

k
, x̂−

k
is less weighted in the update stage, as a

result the actual observation is more weighted. Fading factors can
be introduced into the prior covariance matrix through three differ-
ent ways, i.e. rescaling P+

k−1, see e.g. [3]; rescaling Qk−1, see e.g. [14],
or directly rescaling P−

k
, see e.g. [11]. Fading factors can be either

single ones [14] or multiple ones in the form of diagonal matrix [3].
In [15] a special structure to rescale P−

k
is proposed. This structure

is different from most of the ordinary fading filters and is derived
rigorously through linear matrix inequality. In [11], the stability
analysis of the fading filter is carried out. Fading memory strate-
gies have been introduced into the newly developed derivative-free
nonlinear filters such as unscented KF [14]. Generally the perfor-
mance of different fading filters may  be slightly different in certain
applications, but it is the basic common point that all of them have
the ability of adaptation. It is noted that (11) is not the only criterion
to detect the abnormal operation of the filter, many other criterion
are used in the above papers.

Contrary to the adaptive, or specifically the fading filters, some
robust filters assume that the process model is correctly con-
structed, so P−

k
and x̂−

k
are correctly obtained. The abnormally large

innovation vector implies that there are some errors in the obser-
vation, so the observation is less weighted in the update stage of
the KF through modifying the observation noise covariance, as a
result, x̂−

k
is more weighted. This can be achieved by directly enlarg-

ing Rk [16]. An enlarged Rk results in a reduced filter gain Kk, so
robustness can also be achieved by directly rescaling Kk[11]. M-
estimation based robust filters have been widely studied in recent
years. Bayesian estimator, as a generalization of KF was  robustified
in [17]. As a direct application of [17], the M-estimation based KF
for rank deficient observation model was proposed in [18]. Then
the M-estimator based KF is extended to the derivative-free non-
linear filters through the statistical linear regression [19]. But these
nonlinear robust KFs achieve robustness at the cost of reducing the
accuracy of the nonlinear transformation itself, so they are modi-
fied through exploiting the intuitive meaning of the M-estimator,
i.e. that the process of M-estimator is equivalent to constructing
pseudo observations or inflating the covariances [12]. This modi-
fied robust filter is further studied in [13] and extended to divided
difference filter in [20].

It is apparent from the above analysis that adaptive and robust
method are two opposite strategies, i.e. actual observation is
assumed correct in the adaptive ones while predictive state estima-
tion is assumed correct in the robust ones. Both the adaptive and
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