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a b s t r a c t 

Background and objective: Dose-finding, aiming at finding the maximum tolerated dose, and pharma- 

cokinetics studies are the first in human studies in the development process of a new pharmacological 

treatment. In the literature, to date only few attempts have been made to combine pharmacokinetics and 

dose-finding and to our knowledge no software implementation is generally available. In previous pa- 

pers, we proposed several Bayesian adaptive pharmacokinetics-based dose-finding designs in small pop- 

ulations. The objective of this work is to implement these dose-finding methods in an R package, called 

dfpk . 
Methods: All methods were developed in a sequential Bayesian setting and Bayesian parameter estima- 

tion is carried out using the rstan package. All available pharmacokinetics and toxicity data are used to 

suggest the dose of the next cohort with a constraint regarding the probability of toxicity. Stopping rules 

are also considered for each method. The ggplot2 package is used to create summary plots of toxicities 

or concentration curves. 

Results: For all implemented methods, dfpk provides a function ( nextDose ) to estimate the probability 

of efficacy and to suggest the dose to give to the next cohort, and a function to run trial simulations to 

design a trial ( nsim ). The sim.data function generates at each dose the toxicity value related to a 

pharmacokinetic measure of exposure, the AUC, with an underlying pharmacokinetic one compartmental 

model with linear absorption. It is included as an example since similar data-frames can be generated 

directly by the user and passed to nsim . 
Conclusion: The developed user-friendly R package dfpk , available on the CRAN repository, supports the 

design of innovative dose-finding studies using PK information. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Dose-finding studies and pharmacokinetics (PK) are carried out 

at the first phases of clinical evaluation of a new drug in humans. 

Drug safety is evaluated in the dose-finding study, which aims at 

identifying the maximum tolerated dose (MTD) [1] . Meanwhile, the 
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PK data collected during such study provides the description of the 

dose-concentration relationships [2] . Nevertheless, these two ap- 

proaches are often conducted and reported independently in dif- 

ferent sections in publications reporting trial results [3] . Identifying 

the right dose or set of doses at an early stage is crucial: selecting 

too toxic doses can result in patient overdosing, while selecting 

an inefficient dose increases the likelihood that the drug will be 

found to be ineffective in subsequent clinical evaluation [4] . Par- 

ticularly in the case of small populations, such as rare diseases or 

paediatrics, it should be useful to take into account all the infor- 
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mation collected during the trial, and to try to utilize the PK mea- 

surements within the dose-finding design. Only few attempts have 

been described in the literature so far and, usually, the methods 

were built for a very specific situation [5–8] . Moreover, no soft- 

ware implementations are publicly available. 

In this article we present the new R package dfpk (short for 

dose-finding Pharmacokinetics), which provides the Bayesian adap- 

tive PK-based dose-finding designs in small populations proposed 

by Ursino et al. [8] through the freely available R software [9] . The 

six methods detailed in [8] have been implemented in dfpk . For 

each of them, two functions are provided: (i) a function to deter- 

mine the next recommended dose (during the trial) or the rec- 

ommended MTD (at the end of the trial) and (ii) a function to 

run simulations of phase I studies to design a new trial. Interac- 

tive graphical representations of the dose-concentration curve, of 

the dose allocation process in the trial and of the dose-toxicity re- 

sponse are also provided by the package. 

The paper is organised as follows. Section 2 introduces the sta- 

tistical methods proposed by Ursino et al. [8] , along with the de- 

scription of the suggested scenarios to be simulated. Section 3 out- 

lines the structure of the package and the main functions of the 

paper ( sim.data , nextDose and nsim ) with practical examples. 

Section 4 & 5 include conclusion, discussion and recommendations. 

2. Computational methods 

The present section briefly reviews the methods proposed by 

Ursino et al. [8] to perform dose-finding taking into account PK 

measurements. We then describe the scenarios simulated in [8] in 

order to evaluate the robustness of the method, which have been 

added as examples in the dfpk package. 

2.1. Dose-finding methods 

Let D = { d 1 , . . . , d k } be the set of K possible doses with 

d 1 < ��� < d k and d [ i ] ∈ D be the dose administered to the i th subject 

( i = 1 , . . . , n, where n denotes the sample size) and y i be a binary 

variable which takes value 1 if the i th subject shows a DLT (dose- 

limiting toxicity) and 0 otherwise. Moreover, let z i be the logarithm 

of the area under the curve (AUC) of the concentrations of drug in 

blood plasma against time, for the i th patient. 

All methods share the same fundamental idea for the dose- 

escalation rule: the dose chosen for the next cohort enrolled is 

the one with probability of toxicity nearest to the target θ se- 

lected by the trial investigators. A no-skipping rule is given: if 

some doses have not yet been tested, the dose is chosen from 

D 

∗ ⊂ D , a subset of D which contains all the doses already evalu- 

ated and the first dose level immediately above. The final recom- 

mended MTD is given by the dose that would have been admin- 

istered for the (n + 1) st subject enrolled in the trial. Finally, we 

added in all methods the same stopping rule: if the posterior prob- 

ability of toxicity of the first dose is greater of a specified thresh- 

old, then no dose is suggested and the trial is stopped. 

Each method is separated from the others. We adopted the con- 

vention of starting the subscription of β parameter from 0 for each 

method. Therefore, even if the parameters share the same names 

across models, they have different interpretations. In the following, 

we briefly describe how the probability of toxicity is estimated and 

computed in each method. 

2.1.1. PKCOV 

PKCOV is a modification of the method proposed by Piantadosi 

and Liu [5] who suggested to use the AUC as a covariate for p T , the 

probability of toxicity, through the logit link. Therefore, the dose- 

toxicity model is 

logit ( p T ( d k , �z d k , β) ) = −β0 + β1 log ( d k ) + β2 �z d k 

∀ d k ∈ D, (1) 

where β = (β1 , β2 ) , β0 is a constant selected through a sensitivity 

analysis or with prior information, �z d k is the difference between 

the logarithm of population AUC at dose d k and z , the logarithm of 

AUC of the subject at the same dose. Independent uniform distri- 

butions are selected as prior distributions for β1 and β2 . In detail, 

β1 ∼ U( max (0 , m 1 − 5) , m 1 + 5) , where m 1 reflects the prior infor- 

mation on the parameter and the length of the domain of the dis- 

tribution can go up to 10, and β2 ∼ U (0, 5). Both β0 and m 1 should 

be selected using prior information, such as from preclinical data, 

and sensitivity analysis should be done. The estimated probabil- 

ity of toxicity versus dose is obtained by inverting Eq. (1) , using 

β1 = 

ˆ β1 , the estimated parameter, and �z d k = 0 . 

2.1.2. PKLIM and PKCRM 

PKLIM is a modification of the method proposed by Patterson 

et al. [6] and Whitehead et al. [10] . A normal PK-toxicity model is 

used: 

z i | β, ν ∼ N 

(
β0 + β1 log d i , ν

2 
)
, (2) 

where β = (β0 , β1 ) are the regression parameters, and ν is the 

standard deviation. A bivariate normal distribution and a beta 

distribution are chosen for β and ν , respectively, that is, β ∼
N(m , ν2 (g� )) and ν ∼ Beta (1, 1). Therefore, a hierarchical prior dis- 

tribution is given to β, where m = (− log Cl pop , 1) and g should be 

chosen using prior information. For instance, Cl pop denotes the at- 

tended value of the clearance at population level, and g reflects the 

precision. The probability of toxicity of each dose is computed as 

P (z > L | d k , β = 

ˆ β, ν = ˆ ν) ∀ d k ∈ D, (3) 

where L is a threshold set before starting the trial and the hat de- 

notes the posterior means of the parameters. Since an assumption 

underlying the model is that DLTs are based on the AUC exceeding 

some threshold, the method could be applicable only when such 

a threshold is known. In order to avoid this problem, the PKCRM 

method was proposed, which is the combination of PKLIM and the 

CRM [11] using a power working model and normal prior on the 

parameter. In PKCRM the dose recommended for the next subject 

is the lowest of the doses recommended by the two methods. 

Note that although the same notation has been used for con- 

venience, the parameters β0 and β1 are different in the different 

models. 

2.1.3. PKLOGIT, PKPOP, PKTOX 

PKLOGIT, inspired by Whitehead et al. [7] , combines two regres- 

sions to compute the probability of toxicity versus the dose. The 

first one is the same as Eq. (2) , that is z versus dose. In the second, 

z is used as a covariate in a logistic regression model for p T . This 

means that now the probability of toxicity is described in term of 

AUC and not any more in term of dose. Therefore, we have that 

logit (p T (z, β)) = −β2 + β3 z, (4) 

where β2 and β3 have independent uniform prior distributions, 

that is, β2 ∼ U (0, m 2 ) and β3 ∼ U (0, m 3 ), with m 2 ≥ m 3 , and values 

can be chosen using prior information. If no information is avail- 

able, m 2 = 20 and m 3 = 10 are good starting values for a sensitiv- 

ity analysis. The probability of toxicity associated with each dose 

is obtained by using the estimated parameters of each regression 

model in the following expected value formula: 

P (y = 1 | d k , β = 

ˆ β, ν = ˆ ν) = E 

[
1 

1 + e 
ˆ β2 − ˆ β3 z 

]

= 

∫ 
1 

1 + e 
ˆ β2 − ˆ β3 z 

g(z) dz, (5) 
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