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a b s t r a c t 

Background and Objective: Nonlinear mixed-effect models (NLMEMs) are increasingly used for the analy- 

sis of longitudinal studies during drug development. When designing these studies, the expected Fisher 

information matrix (FIM) can be used instead of performing time-consuming clinical trial simulations. 

The function PFIM is the first tool for design evaluation and optimization that has been developed in R. 

In this article, we present an extended version, PFIM 4.0, which includes several new features. 

Methods: Compared with version 3.0, PFIM 4.0 includes a more complete pharmacoki- 

netic/pharmacodynamic library of models and accommodates models including additional random 

effects for inter-occasion variability as well as discrete covariates. A new input method has been added 

to specify user-defined models through an R function. Optimization can be performed assuming some 

fixed parameters or some fixed sampling times. New outputs have been added regarding the FIM such 

as eigenvalues, conditional numbers, and the option of saving the matrix obtained after evaluation or 

optimization. Previously obtained results, which are summarized in a FIM, can be taken into account 

in evaluation or optimization of one-group protocols. This feature enables the use of PFIM for adaptive 

designs. The Bayesian individual FIM has been implemented, taking into account a priori distribution of 

random effects. Designs for maximum a posteriori Bayesian estimation of individual parameters can now 

be evaluated or optimized and the predicted shrinkage is also reported. It is also possible to visualize 

the graphs of the model and the sensitivity functions without performing evaluation or optimization. 

Results: The usefulness of these approaches and the simplicity of use of PFIM 4.0 are illustrated by two 

examples: (i) an example of designing a population pharmacokinetic study accounting for previous re- 

sults, which highlights the advantage of adaptive designs; (ii) an example of Bayesian individual design 

optimization for a pharmacodynamic study, showing that the Bayesian individual FIM can be a useful 

tool in therapeutic drug monitoring, allowing efficient prediction of estimation precision and shrinkage 

for individual parameters. 

Conclusion: PFIM 4.0 is a useful tool for design evaluation and optimization of longitudinal studies in 

pharmacometrics and is freely available at http://www.pfim.biostat.fr . 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Nonlinear mixed-effect models (NLMEMs) are frequently used 

in model-based drug development to analyze longitudinal data [1] . 

They were initially used in pharmacokinetic (PK) or pharmaco- 

dynamic (PD) analyses: PK analysis deals with the time course 

of drug concentration, whereas PD refers to the relationship be- 

tween the drug effect and doses or concentrations. The analysis 

through NLMEMs (i.e. the population approach) allows the estima- 
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tion of mean parameters, their inter-individual/inter-occasion vari- 

ability as well as covariate effects, and is appropriate for exploit- 

ing the richness of repeated measurements. Consequently, this ap- 

proach is increasingly used in the biomedical field, not only for 

PKPD [2,3] or joint PK analysis of parent drugs and their active 

metabolites [4,5] , but also for analyses of viral loads [6] , of bac- 

terial resistance to antibiotics [7] , and of the dose-response rela- 

tionship [8] . This approach has become the main statistical tool in 

pharmacometrics, the science of quantitative pharmacology [9] . To 

estimate parameters in NLMEMs, maximum likelihood estimation 

is commonly used, although the likelihood for these models has 

no analytical solution. Specific algorithms, implemented in several 
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software packages, have therefore been proposed to perform this 

maximization [1,10] . Once population parameters are estimated, in- 

dividual parameters can be obtained using maximum a posteriori 

(MAP) Bayesian estimation. This approach optimally incorporates 

all the information available from the whole population to increase 

the ability to estimate individual parameters and allows the use of 

sparse sampling, where few samples are collected from each sub- 

ject. 

Before the estimation step, the investigator of a study is con- 

fronted with the choice of the experimental design, which is cru- 

cial for efficient estimation of parameters in NLMEMs, especially 

when the studies are conducted in patients from whom few sam- 

ples can be taken. A design in NLMEMs, also called a population 

design, is composed of the number of elementary designs and the 

specification of each elementary design and the associated number 

of subjects. In this setting, the term elementary design is used to 

describe a group of subjects with identical design characteristics. 

The choice of design consists in determining a balance between 

the number of subjects and the number of samples per subject, 

as well as the allocation of informative times and doses, according 

to experimental constraints. To evaluate and compare designs, the 

theory of optimum experimental design in classic nonlinear mod- 

els has been introduced [11–13] , based on the expected Fisher in- 

formation matrix (FIM). The inverse of the FIM, according to the 

Cramer-Rao inequality, is the lower bound of the variance covari- 

ance matrix of any unbiased estimators of the parameters. From 

the square roots of the diagonal elements of the inverse of the FIM, 

the predicted standard errors (SE) for estimated parameters can be 

calculated. A widely used optimality criterion for design optimiza- 

tion is the D-criterion, which consists in maximizing the determi- 

nant of the FIM. While the individual FIM for standard nonlinear 

regression has an analytical expression in fixed effect models, there 

is no closed form of the population FIM in NLMEMs. That is why 

linear approximations of the model are common approaches in the 

design theory to evaluate the population FIM [14–16] . When lin- 

earizing the model around a guess value of the fixed effects, the 

variance of the observations is then independent of the fixed ef- 

fects, which leads to a block-diagonal expression of the FIM [17] . It 

has been shown that this simpler expression of the FIM performed 

better than the full matrix expression given by other linearization 

approaches, providing results closer to those obtained by clinical 

trial simulation [18] . This expression of the FIM was extended to 

design crossover trials, including inter-occasion variability and dis- 

crete covariates fixed or changing between periods [19] . Beside the 

individual and population FIM, the expected Bayesian individual 

FIM was also developed to predict the estimation error of individ- 

ual parameters obtained by MAP [20,21] . In addition, the Bayesian 

FIM can also be used to predict the shrinkage [21] , a metric quan- 

tifying the informativeness of the individual data and the reliability 

of individual parameter estimates [22] . The design approach based 

on these developments using the FIM is a good alternative to clin- 

ical trial simulation [23] . However, it requires a priori knowledge 

of the model and its parameters, which can usually be obtained 

from previous experiments and which leads to locally optimal de- 

signs. Alternatives to locally optimal designs are robust designs, re- 

lying on a priori distribution of parameters [24,25] , or adaptive de- 

signs, which use accumulating information in order to decide how 

to modify predefined aspects of the study during its implementa- 

tion instead of leaving them fixed until the end [26,27] . An adap- 

tive design approach in NLMEMs that optimizes the design of each 

cohort while taking into account previous FIM obtained from pre- 

vious cohorts has been proposed [28,29] . 

Expressions of the individual FIM and population FIM based on 

FO are available in several software tools for designs in NLMEMs 

[18] . In particular, these expressions were implemented in PFIM, 

the first R function dedicated to design evaluation and optimiza- 

tion ( www.pfim.biostat.fr ). PFIM has been available since 2001 

[30] for designs in single-response models. Version 3.0 including 

extensions of PFIM to multiple-response models was released in 

2008 and described in [31] . Then version 3.2 was released in 2010, 

with a more complete PKPD library of models, had additional fea- 

tures, as described in [32] , for including inter-occasion variability 

(IOV), discrete covariates with prediction of power for the compar- 

ison or equivalence Wald test [19,33] . PFIM Interface, the graphical 

user interface (GUI) using R software, is also available and can be 

used to perform several features of the R script versions of PFIM. 

Optimization in PFIM is based on the D-optimality criterion de- 

scribed previously. Version 3.0 and later versions implement two 

optimization algorithms in PFIM: Simplex [34] and the Fedorov- 

Wynn algorithm [33,35,36] . 

Several features have been added to the new version 4.0 of 

PFIM. This new version includes a new input method to specify 

user-defined models through an R function. Design optimization 

can now be performed with fixed parameters or fixed sampling 

times. The FIM obtained after evaluation or optimization can be 

saved in a file. Evaluation and optimization can also be performed 

accounting for a previous FIM which summarizes previously ob- 

tained results, following the principle of adaptive designs. Addi- 

tional features based on the Bayesian individual FIM have been 

implemented. Designs for MAP estimation of individual parameters 

can be evaluated or optimized and the predicted shrinkage is also 

reported. Finally, it is now possible to visualize the graphs of the 

model and the sensitivity functions without necessarily performing 

evaluation or optimization. 

All the new features of PFIM 4.0 are described in this arti- 

cle. Section 2 presents the methodological developments for dif- 

ferent new aspects of designs in NLMEMs. Then, the features im- 

plemented in PFIM 4.0 and the structure of the R program and its 

use are presented in Section 3 , through a summary of model spec- 

ifications as well as a description of the input/output files. Lastly, 

two illustrations of the use of PFIM 4.0 are provided in Section 4 : 

(i) an example of designing a population PK study taking into ac- 

count previous results and (ii) an example of Bayesian individual 

design optimization for a dose-response study. 

2. Statistical methods 

2.1. Design 

The elementary design ξ i of individual i ( i = 1 , . . . , N) is de- 

fined by the number n i of samples and their allocation in time 

( t i 1 . . . , t in i ). In the case of K responses, ξ i is composed of K sub- 

designs such that ξi = (ξi 1 , ξi 2 , . . . , ξiK ) . The sub-design ξ ik is then 

defined by (t ik 1 , t ik 2 , . . . , t ikn ik 
) , with n ik sampling times for the ob- 

servations of the k th response, so that n i = 

∑ K 
k =1 n ik . 

In the case of designs with H occasions, ξ i is composed of 

H sub-designs such that ξi = (ξi 1 , ξi 2 , . . . , ξiH ) . The design ξ ih at 

each occasion h ( h = 1 , . . . , H) for K responses is composed of 

(ξih 1 , ξih 2 , . . . , ξihK ) , with ξihk = (t ihk 1 , t ihk 2 , . . . , t ihkn ihk 
) . The number 

of sampling times at the h th occasion is n ih = 

∑ K 
k =1 n ihk , so that 

n i = 

∑ H 
h =1 

∑ K 
k =1 n ihk . 

For N individuals, the population design is composed of the N 

elementary designs such as � = { ξ1 , . . . , ξN } . Usually, population 

designs are composed of a limited number Q of groups of indi- 

viduals with identical design ξ q within each group, performed in a 

number N q of individuals. The population design can thus be writ- 

ten as � = { [ ξ1 , N 1 ] ; [ ξ2 , N 2 ] ; . . . ; [ ξQ , N Q ] } . In the case of identical 

elementary designs in all individuals, the one-group population de- 

sign is defined by � = { ξ , N} . 
Individual design (for standard nonlinear regression) and indi- 

vidual Bayesian design (for Bayesian estimation of individual pa- 

https://www.pfim.biostat.fr


Download English Version:

https://daneshyari.com/en/article/6891071

Download Persian Version:

https://daneshyari.com/article/6891071

Daneshyari.com

https://daneshyari.com/en/article/6891071
https://daneshyari.com/article/6891071
https://daneshyari.com

