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a b s t r a c t 

Background and objective : The absolute quantification of dynamic myocardial perfusion (MP) PET imaging 

is challenged by the limited spatial resolution of individual frame images due to division of the data into 

shorter frames. This study aims to develop a method for restoration and enhancement of dynamic PET 

images. 

Methods : We propose that the image restoration model should be based on multiple constraints rather 

than a single constraint, given the fact that the image characteristic is hardly described by a single con- 

straint alone. At the same time, it may be possible, but not optimal, to regularize the image with mul- 

tiple constraints simultaneously. Fortunately, MP PET images can be decomposed into a superposition of 

background vs. dynamic components via low-rank plus sparse (L + S) decomposition. Thus, we propose an 

L + S decomposition based MP PET image restoration model and express it as a convex optimization prob- 

lem. An iterative soft thresholding algorithm was developed to solve the problem. Using realistic dynamic 
82 Rb MP PET scan data, we optimized and compared its performance with other restoration methods. 

Results : The proposed method resulted in substantial visual as well as quantitative accuracy improve- 

ments in terms of noise versus bias performance, as demonstrated in extensive 82 Rb MP PET simulations. 

In particular, the myocardium defect in the MP PET images had improved visual as well as contrast versus 

noise tradeoff. The proposed algorithm was also applied on an 8-min clinical cardiac 82 Rb MP PET study 

performed on the GE Discovery PET/CT, and demonstrated improved quantitative accuracy (CNR and SNR) 

compared to other algorithms. 

Conclusions : The proposed method is effective for restoration and enhancement of dynamic PET im- 

ages. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Myocardial perfusion (MP) PET imaging can provide improved 

diagnostic accuracy, location of disease and quantification of blood 

flow over conventional SPECT imaging [1-3] . In particular, dynamic 

MP PET imaging offers the very notable capability to measure 

changes in the bio-distribution of radiopharmaceuticals within the 

myocardial region over time [4-6] . This offers a powerful mean to 

estimate the kinetic parameters (e.g. the tracer transport rate K 1 
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and subsequently myocardial blood flow (MBF)) by using the var- 

ious kinetic modeling techniques. However, the dynamic MP PET 

imaging is primarily limited to research and remains underutilized 

in the clinical setting. The main challenge is the increased noise 

with limited durations of each frame, which will ultimately impact 

the quantification [7] . 

Individual PET image reconstruction is finished by statisti- 

cal reconstruction methods, such as maximum likelihood (ML) 

method [8] . However, the ML often results in high noise at low 

counts. This problem [9] is further aggravated in dynamic scans. 

Strategies have been explored to improve the reconstruction ac- 

curacy of the dynamic frames for kinetic parameter estimation 

[10-15] . Reconstruction-strategies (e.g. 4D reconstruction) exploit 
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Fig. 1. The dynamic MP PET images (left) and corresponding data sets (right). Each column of X consists of the specific pixels along the dotted line shown in left, and it 

varies as time (t) changes. X L represents the background (low-rank) component of X that changes slowly, and X S is the dynamic (sparse) component of X that captures the 

dynamic changes in the frames. 

Fig. 2. One-tissue compartment model for kinetic modeling of 82 Rb MP PET imag- 

ing. This model has only one compartment in myocardial tissue and exchanges ra- 

diotracer between arterial blood compartment and myocardial compartment by K 1 
and k 2 . 

the spatiotemporal correlation in dynamic PET scans to improve 

the precision of parametric image. However, 4D methods can be 

algorithmically and computationally intensive and require further 

optimization effort s [16-18] . 

In contrast to reconstruction-based strategies, post- 

reconstruction or restoration strategies process the dynamic 

frames already reconstructed with filtered back projection (FBP) 

or ML, thus being more readily applicable to clinical data [19] . 

Gaussian filter can be used for image smoothing while resulting in 

edge blurring. Edge-preserving filters [20] have been proposed to 

reduce the noise while preserving edges. More recently, nonlocal 

means type filter methods have been developed for image de- 

noising [21-23] . For example, Dutta et al. [21] proposed non-local 

means method for dynamic PET denoising. Chun et al. [22] pro- 

posed non-local means methods combining the side information 

of CT. Chan et al. [23] proposed an anatomically guided median 

non-local means filter combining the non-local means method and 

anatomical regional information. 

Alternatively, techniques consider using the sparse characteris- 

tic of PET images [24-25] . The total variation regularization has 

been incorporated into PET reconstruction both in image space 

[26-27] or measurement space [28] . Multidimensional wavelet de- 

Fig. 4. The polar plot of the 17 myocardial segments for tomographic imaging of 

the heart. 

noising was proposed to restore the dynamic cardiac PET images 

[29-30] . Su and Shoghi [31] proposed wavelet-based noise reduc- 

tion technique which can reduce the noise more efficiency at high 

noise levels. Le Pogam et al. [32] proposed a strategy that com- 

bines the complementary wavelet and coverlet transform account- 

ing for directional properties of the image. Nonetheless, all these 

methods exploit the characteristic that the spatial or temporal sig- 

nals of dynamic PET images are sparse (either in direct represen- 

tation or transform-domain). 

There are approaches performing PCA or KLT on the dynamic 

PET data. For example, Kao et al. [33] performed PCA on the dy- 

namic sinogram to reduce the noise. Wernick et al. [34] proposed 

to first apply KLT on the standard datasets, and then reconstruct 

the uncorrelated dynamic data independently, resulting fast yet ac- 

curate reconstruction. Furthermore, Matthews et al. [35] used SVD, 

as applied to initially reconstructed images, to derive the temporal 

Fig. 3. (Left) K 1 parametric image and (right) TACs generated using one-tissue compartmental model. (The defect myocardium is labeled with the red arrow). (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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