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A B S T R A C T

Background: Graph-based hierarchical clustering algorithms become prohibitively costly in

both execution time and storage space, as the number of nodes approaches the order of

millions.

Objective: A fast and highly memory efficient Markov clustering algorithm is proposed to

perform the classification of huge sparse networks using an ordinary personal computer.

Methods: Improvements compared to previous versions are achieved through adequately

chosen data structures that facilitate the efficient handling of symmetric sparse matrices.

Clustering is performed in two stages: the initial connected network is processed in a sparse

matrix until it breaks into isolated, small, and relatively dense subgraphs, which are then

processed separately until convergence is obtained. An intelligent stopping criterion is also

proposed to quit further processing of a subgraph that tends toward completeness with equal

edge weights. The main advantage of this algorithm is that the necessary number of itera-

tions is separately decided for each graph node.

Results: The proposed algorithm was tested using the SCOP95 and large synthetic protein

sequence data sets. The validation process revealed that the proposed method can reduce

3–6 times the processing time of huge sequence networks compared to previous Markov

clustering solutions, without losing anything from the partition quality.

Conclusions: A one-million-node and one-billion-edge protein sequence network defined by

a BLAST similarity matrix can be processed with an upper-class personal computer in 100

minutes. Further improvement in speed is possible via parallel data processing, while the

extension toward several million nodes needs intermediary data storage, for example on

solid state drives.
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1. Introduction

Clustering algorithms have the main goal to structure a certain
set of object data into groups based on similarity or dissimi-
larity criteria [1]. Hierarchical clustering techniques organize
the object data into a hierarchy of groups, using either the ag-
glomerative or divisive approach performed on the graph
associated to the input data. The agglomerative approach ini-
tially considers each item a separate cluster, and gradually
merges those clusters that are most similar or least dissimi-
lar at that moment. On the other hand, the divisive approach
starts with a single cluster containing all items and builds the
hierarchy via recursive splits. An important question in both
approaches is where the processing should be stopped, or in
other words, which is the ideal number of clusters [2].

As the size of the input data grows, both runtime and
memory efficiency are becoming key issues. Several hierar-
chical clustering solutions have been proposed to address
these problems. Gagolewski et al. [3] proposed and validated
a modified single link criterion for agglomerative clustering,
involving constraints based on cluster size inequality.
Loewenstein et al. [4] developed an accurate (non-
approximative) agglomerative clustering algorithm upon the
centroid-based approach (UPGMA) that does not need all edges
loaded at the same time in the memory. The divisive ap-
proach performs a more complex job by default, because in
any moment there are many more possibilities in choosing a
cluster to split and a way of splitting it, than in selecting two
clusters to merge.This difficulty is bridged by the Markov clus-
tering (MCL) algorithm [5], as it does not choose a single cluster
to split in each iteration. It rather establishes two operations
that work against each other: inflation favors strong edges in
the graph at the detriment of weak ones, while expansion
favors longer walks along the graph. Edges weighted below a
predefined threshold are eliminated, so the splitting of clus-
ters is caused in each iteration by vanishing edges. Since Enright
et al. [6] demonstrated its accuracy in the identification of
protein families, Markov clustering has become a very popular
tool in the analysis of protein sequence and interaction net-
works [7–10], video processing [11], image processing [12],
language modeling [13], community detection [14], human
action categorization [15], document clustering [16], and FPGA
circuit design [17].

Handling graphs with 105–107 nodes and their correspond-
ing similarity matrices is prohibitively costly in both runtime
and storage space. Some of our recent MCL solutions effi-
ciently handled both problems to a certain extent. The best
approach to storage limitations employs sparse matrix
representations [18,19], while the so-called matrix splitting
version of MCL [20] proved runtime efficient during the late
iterations of the execution. In this paper, we propose a two-
stage solution that optimizes the total runtime of the MCL
algorithm running on large (but still loadable) data sets, by
combining the two above mentioned solutions. The novel
algorithm employs the sparse matrix version during the
first few loops (usually 3 to 10, depending on the nature of
input data, and the values of inflation rate r and similarity
threshold ε), and switching to the matrix splitting version
as soon as it becomes favorable. The optimal switching

time is automatically detected separately for each isolated
subgraph.

The MCL algorithm proposed in this paper differs from the
original one [5,6] in the following terms:

1. The proposed algorithm operates on symmetrical graph and
matrix, symmetry is enforced in each iteration.

2. Nonzero similarity values on the diagonal of the similar-
ity matrix are never eliminated. This way each row and
column contains at least one nonzero similarity value at
any moment, which was not the case in Ref. [5].This makes
our hierarchy of clusters easier to interpret.

3. The proposed algorithm obtains clusters as isolated sub-
graphs of the similarity graph, which are never overlapping
each other.

The remainder of this paper is structured as follows.
Section 2 reviews some previous MCL versions, whose ele-
ments will serve as bricks while building the new solution.
Section 3 presents the new aspects of the proposed efficient,
two-stage MCL algorithm. Section 4 evaluates the behavior of
the proposed method. Section 5 discusses the achieved results
and outlines the role of each parameter, while section 6 con-
cludes this study.

2. Background

MCL in its conventional (or naive) and easily implementable
form has a theoretical complexity of O(n3), and needs several
hours to perform a single loop on a graph containing 104 nodes
[20]. Although this inefficient solution equally works with any
kind of pairwise similarity data, it is prohibitively slow. Accel-
erating the performance starts with choosing the appropriate
similarity criterion. For example, in case of protein sequence
data, BLAST gives us a virtually symmetrical similarity matrix
with large number of zero values.These properties of the matrix
are the primary source of optimization. Runtime efficiency can
be achieved via avoiding or skipping additions and multipli-
cations with null arguments,while memory efficiency is possible
through avoiding the unnecessary storage of such values.

When a large BLAST similarity matrix is fed to MCL, the cor-
responding graph usually has all its nodes connected together,
but the matrix density is somewhere between 0.1% and 0.5%
[21]. After performing a few initial loops, the large graph is
divided into several smaller isolated subgraphs. The corre-
sponding matrix of such a graph, after a suitably chosen
permutation of rows and columns, contains diagonally placed
dense blocks of nonzero values, and zeros outside these blocks.
Each diagonally placed block corresponds to an isolated sub-
graph in the graph. While the initial matrix structure can be
more efficiently handled using a sparse matrix representa-
tion, these diagonally placed blocks are easier to address within
classical two-dimensional arrays. In the following, we will revisit
some previous solutions employing both formats.

2.1. Matrix splitting

It may occur at any moment during the execution of the al-
gorithm that a certain column and the corresponding row of
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