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a  b  s  t  r  a  c  t

The  operating  point  of a typical  chemical  process  is  determined  by  solving  a  non-linear  optimization
problem  where  the  objective  is to minimize  an  economic  cost  subject  to  constraints.  Often,  some  or all  of
the constraints  at the  optimal  solution  are  active,  i.e.,  the  solution  is  constrained.  Though  it  is profitable
to  operate  at  the constrained  optimal  point,  it might  lead  to infeasible  operation  due  to  uncertainties.
Hence,  industries  try to operate  the  plant  close  to the optimal  point  by “backing-off”  to  achieve  the  desired
economic  benefits.  Therefore,  the primary  focus  of this  paper  is  to  present  an  optimization  formulation  for
solving the  dynamic  back-off  problem  based  on  an  economic  cost  function.  In this  regard,  we work  within
a stochastic  framework  that  ensures  feasible  dynamic  operating  region  within  the prescribed  confidence
limit.  In  this  work,  we aim  to reduce  the  economic  loss  due  to the  back-off  by  simultaneously  solving  for
the operating  point  and  a compatible  controller  that ensures  feasibility.  Since  the  resulting  formulation
is  non-linear  and non-convex,  we  propose  a novel  two-stage  iterative  solution  procedure  such  that  a
convex  problem  is solved  at each  step  in  the  iteration.  Finally,  the  proposed  approach  is demonstrated
using  case  studies.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Background

Profitability is the major concern of a chemical plant and one
approach to achieve this is to operate the plant at the optimal point
obtained from a non-linear steady state optimizer. The optimizer
minimizes a suitable cost function subject to equality and inequal-
ity constraints. Often, the solution of the optimizer is constrained
at some of the inequalities, that is, there are several active con-
straints. Typically, it is assumed that these active constraints should
be controlled at their limiting values to achieve economic benefits.
However, the presence of uncertainties in the form of measurement
noise, modeling error, parametric uncertainties and disturbances
might cause constraint violations. Therefore, it is important to find
an operating point close to the active constraints such that the plant
remains feasible for the expected range of uncertainties. Thus, the
focus of our work is to propose an optimization formulation that
obtains the best trading-off between feasibility and profitability.

Optimal process operations depend on process design and safety
thresholds, etc. These constraints define the feasible operating win-
dow to the optimizer. To ensure feasible operation under uncertain
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conditions, it may  be necessary to “back-off” from the active con-
straints which however results in loss of achievable profit. Hence,
the optimizer minimizes a loss function for backing – off from the
active constraints. The term “back – off” is defined as,

Back − off = |Actual steady state operating point

− Nominally optimal steady state operating point| (1)

Based on the notion of back-off, Narraway et al. [15] presented
a method to assess the economic performance of the plant in
the presence of disturbances. To ensure feasibility, the maximum
amplitude of the disturbance for a certain range of frequency was
used to determine the necessary back-off and alternate designs
were evaluated. They assume the set of measurements are perfectly
controlled and controllability is tested after obtaining the solu-
tion. Later, Narraway and Perkins [16] extended their frequency
response based method of estimating the closed loop constraint
back off on the assumption of perfect control hypothesis to select
the optimal set of measurements and manipulated inputs. This
was accomplished by introducing the binary decision variable into
the bounds of all possible measurements and manipulations. Also,
the method was extended for the case of realistic PI controllers.
Although the formulation is an Mixed Integer Linear Program
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(MILP), the dimension of the problem is very high owing to the
number of frequencies considered for each of the constraints. To
solve this, a solution algorithm was presented where the obtained
solution is compared with the open loop (without control) solution
to quantify the profitability that would achieved by the controller
and the controller with less benefits are eliminated [7]. All of the
above methods were developed to handle single disturbance only.

To address the case of multiple disturbances, Bahri et al. [2]
addressed the back off problem for control of active constraints in
the regulatory layer by solving the open loop problem. Figueroa
et al. [5] extended the above approach to the closed-loop case
where the figure of merit “maximum percentage recovery” is
defined to choose between alternative control configurations. In
summary, disturbance is the only source of uncertainty considered
in evaluating the different control structures. However, in some
cases measurement noise and control error also play a significant
role.

Disturbances are typically categorized based on the time scale
or frequency of occurrence as fast or high-frequency disturbance
and slow or low-frequency disturbance. The lower regulatory layer
generally handles the fast disturbances whereas the slow distur-
bances are handled by the steady state optimizer. The objective of
the optimization layer is to provide set points to the control layer.
These set points depend on the set of design variables and mea-
surements selected for estimating the model parameters. And, the
choice of measurements have a profound impact in the steady state
economics. In this regard, de Hennin et al. [8] presented a method
for estimating the likely economic benefit that could be achieved by
implementing a steady state optimizer. The cost of instrumentation
is also included in addition to the operational cost to determine the
best optimal measurements. Some of the other works that use the
concept of economic back-off in the area of controllability analysis
are Young et al. [20] and Bahri et al. [1].

Loeblein and Perkins [10] proposed a measure of average devi-
ation from optimum that allows the estimation of economic value
of different online optimization structures. In addition to mea-
surement selection, their work addressed the impact of model
uncertainty on the economics of the optimizer. To analyze this
issue, the authors considered a simple model, approximate model
and rigorous model and concluded that approximate model is
appropriate for on-line optimization. Later, Loeblein and Perkins
[11,12] extended their method of average deviation from optimum
to analyze the dynamic economics of regulatory layer which is
assumed to be implemented using Model Predictive Control (MPC)
system. However, fixed control structures are assumed to rank
between the alternatives.

Peng et al. [19] proposed a stochastic formulation for the
determination of back-off points based on the notion of expected
dynamic operating region. The basic idea in their approach is that
the simultaneous selection of controller and back off point will find
a optimal controller that minimizes the variability of the active
constrained variables. Since the disturbances are assumed to be
stochastic, the dynamic operation is defined in terms of variance.
Extensions of the method to discrete time and partial state infor-
mation case do not alter the formulation. Despite this, the final
form of the optimization problem contains a set of reverse convex
constraints which make the problem difficult to solve. Therefore,
a branch and bound type algorithm was proposed. Sensor selec-
tion for control purposes are addressed in this framework [14,18].
Chmielewski and Manthanwar [4] have found that the obtained
optimal multivariable feedback controller can be used to tune the
objective function weights of the MPC  controller.

In this work, we propose a stochastic formulation of the dynamic
back-off problem that ensures feasible operation for the prescribed
confidence limit. Following Peng et al. [19], the dynamic operat-
ing region is defined for the given disturbances which follow from

the closed loop covariance analysis of the state space model of the
process. Under rather general conditions, this dynamic region can
be characterized as an ellipsoid. The loss function, is a measure
of departure from optimality and we develop a theoretically and
conceptually sound loss function. Controller selection also plays a
crucial role in shaping the dynamic operating region while the size
of the region is characterized by the prescribed confidence limit
and variance of the disturbance considered. Thus, consideration of
the controller gain as a decision variable is important in determin-
ing the optimal operating point which minimizes the loss in profit.
Therefore, the focus of our work is to propose an optimization for-
mulation that determines the economic backed-off operating point
by finding at the same time a suitable controller gain.

The current formulation contains an explicit representation of
the ellipsoid to describe the system dynamics and can handle
partially constrained cases. Unlike our previous work [13], in the
current formulation, the back-off can be viewed as a slack variable
in the feasibility constraints. Furthermore, a novel and computa-
tionally efficient solution methodology has been presented to solve
the non-linear non-convex problem.

This paper is organized as follows. In the next section, we define
the problem and present a development of stochastic formulation
and convex relaxations of the constraints. Next, a solution algo-
rithm has been developed. Finally, illustrations are provided to
demonstrate the approach.

2. Formulation of dynamic back-off problem

The objective of this section is to present an optimization formu-
lation that determines the most profitable steady state operating
point given that the plant has to remain feasible for the expected
set of disturbances affecting the process. Hence, the optimization
formulation should also include differential constraints that char-
acterize the dynamic operating region of the plant. The feasibility
becomes an important issue while operating the plant at the con-
strained optimal point. Therefore, we  need to solve a dynamic
back-off problem.

2.1. Optimization formulation

We  start by determining the Optimal steady state Operating
Point (OOP) by minimizing the economic cost (the negative of the
operating profit) J(x0, u0, d0) where x0, u0 and d0 denote the states,
manipulated inputs and nominal value of disturbances. Thus, the
steady state optimizer solves the non-linear steady state optimiza-
tion problem of the form,

min
x0,u0

J(x0, u0, d0) (2a)

s.t. g(x0, u0, d0) = 0 (2b)

h(x0, u0, d0) ≤ 0 (2c)

At OOP, the states and manipulated inputs are denoted as x∗
0 and u∗

0,
respectively. At OOP, there are three possible cases: unconstrained
optimum (no active constraints), partially constrained (the number
of active constraints is less than the number of manipulated inputs)
and fully constrained (the number of active constraints equals the
number of manipulated inputs). Peng et al. [19] have addressed the
problem for fully constrained case and the back-off from the lin-
earized optimal solution is determined. In the present work, the
focus is on the more general partially constrained case. In contrast
to the fully constrained case where a linear approximation of the
cost function around the optimal point is valid, the partially con-
strained case requires one to include a quadratic penalty for the
inputs to account for the unconstrained degrees of freedom.
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