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a  b  s  t  r  a  c  t

This paper  deals  with  proportional  stabilization  and  closed-loop  step  response  identification  of  the  frac-
tional  order  counterparts  of the unstable  first order  plus dead  time  (FOPDT)  processes.  At  first,  the
necessary  and  sufficient  condition  for stabilizability  of such  processes  by  proportional  controllers  is
found.  Then,  by  assuming  that  a  process  of  this  kind  has  been  stabilized  by  a proportional  controller
and  the step  response  data  of the  closed-loop  system  is available,  an algorithm  is proposed  for  estimating
the  order  and the  parameters  of  an  unstable  fractional  order  model  by using  the mentioned  data.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The inherent nonlinearity of industrial processes yields in these
systems can have multiple steady states [1,2]. Some of these steady
states, which may  be desired operating points for the process,
can be unstable [1]. Some typical processes with this property are
bioreactors, polymerization reactors, exothermic reactors, batch
reactors, steam boilers, distillation columns, crystallization pro-
cesses, and biological systems [3–6].To describe the behavior of
these processes around their unstable steady states, unstable lin-
ear time invariant models are generally used [1]. Using fractional
order operators, which are originated from the fractional calculus,
in constructing the models is a way to enrich these models for bet-
ter describing the behavior of real-world processes. For example,
it has been verified that fractional order models can be effectively
used in modeling of isotope separation columns [7], bioreactors
[8], pressurized heavy water reactors [9], liquid/liquid interfaces
[10], biological systems [11], thermal systems [12,13], and hydro-
logic processes [14]. One significant motivation for applying simple
fractional order models in such applications is that these models
can well approximate the dynamics of many high-order classical
models [15]. Therefore, simple fractional order models can be good
candidates for describing the dynamics of those systems which
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have been conventionally modeled by high-order classical models.
Due to this advantage of fractional order models, finding appropri-
ate methods for estimating the order and the parameters of such
models is of great importance. Among different methods, those
methods which are based on using simple-achieved data of the
system would be valuable methods. For instance, those methods
in which the step response data of the system is used can be appro-
priate in practical point of view [16]. Such data can be achieved
by doing simple experiments. In [17], some methods have been
proposed for estimating the order and the parameters of stable
fractional order models by using the step response data. To com-
plete the mentioned work, the aim of this paper is to propose an
appropriate method for estimating the order and the parameters
of an unstable fractional order model approximating the dynam-
ics of an unstable process. To achieve this aim, at first the unstable
process is stabilized by a proportional controller, and then the step
response data of the closed-loop system is used by the proposed
method to estimate the order and the parameters of an unstable
fractional order model. Since for getting the required estimation
data it is necessary to stabilize the process, the stabilizability prob-
lem is also investigated in the present work. The considered model
in this paper is

G(s) = ke−Ls

Ts˛ − 1
where 0 <  ̨ < 1, T > 0, and k /= 0, (1)

which can be considered as the fractional counterpart of the unsta-
ble first-order plus dead time (FOPDT) models [18]. More precisely,
the following questions will be answered in this paper:
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Fig. 1. A simple feedback control system structure.

(1) What is the necessary and sufficient condition for stabilizability
of a system modeled in the form (1) by a proportional con-
troller?

(2) If a system in the form (1) is stabilized by a proportional con-
troller, how the order and the parameters of this system can be
estimated from the noisy step response data of the closed-loop
system?

The first question will be answered in Section 2. Section 3
devotes to finding the answer of the second question. Finally, the
paper is concluded in Section 4.

2. Stabilizability by a proportional controller

Consider the control system structure shown in Fig. 1, and
assume that the process in this structure can be modeled by the
unstable fractional order transfer function G(s) in form (1). In this
section, it is investigated that is there a proportional controller in
the form C(s) = kc which guarantees the stability of the closed-loop
system shown in Fig. 1? To this end, at first consider the following
theorem.

Theorem 1. System

G(s) = e−Ls

s˛ − 1
, (2)

where 0 <  ̨ < 1 is stabilizable by a proportional controller if and
only if

L < �(1 − ˛)
(

2 cos
(

˛�

2

))−1/˛

. (3)

Proof. Consider the closed-loop system shown in Fig. 1 where G(s)
is given by (2). According to [19: Theorem 3.1], we know that this
closed-loop system is BIBO stable if and only if it does not have any
pole in region

{
s ∈ C|Re(s)≥0

}
. In the other words, this closed-loop

system is BIBO stable if equation

1 + kcG(s) = 0, (4)

where G(s) is given by (2), does not have any solution in region
{s ∈ C|Re(s)≥0}. Therefore, the stability of the mentioned closed-
loop system can be checked by the Nyquist stability criterion [20].
To this end, let us investigate the shape of the polar plot of G(jω).
From (2) it is concluded that

G(jω) = cos(Lω)  − j sin(Lω)
ω˛ cos(˛�/2) + jω˛ sin(˛�/2) − 1

, (5)

for ω ≥ 0. (5) results in

ϕ(ω) � �G(jω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−Lω + tan−1 ω˛ sin(˛�/2)
1 − ω˛ cos(˛�/2)

− � if ω˛ cos(˛�/2) < 1

−Lω − �

2
if ω˛ cos(˛�/2) = 1

−Lω + tan−1 ω˛ sin(˛�/2)
1 − ω˛ cos(˛�/2)

if ω˛ cos(˛�/2) > 1

, (6)

According to (6),

dϕ(ω)
dω

= −L + ˛ω˛−1 sin(˛�/2)
1 − 2ω˛ cos(˛�/2) + ω2˛

. (7)

Fig. 2. Polar plot of G(jω) where L < L*.

Fig. 3. Polar plot of G(jω) where L > L*.

Since 0 <  ̨ < 1, it is deduced that lim
ω→0+

(dϕ(ω)/dω) = +∞. This

means that ϕ(ω) will be an increasing function for small values of
ω ≥ 0. On the other hand, according to (7) we have lim

ω→+∞
(dϕ/dω) =

−∞. Hence, there is ω = ω0 such that ϕ(ω) is a decreasing function
for ω > ω0. Paying attention to the mentioned points, two different
cases schematically shown in Figs. 2 and 3 may  occur for the polar
plot of G(jω). In the first case (Fig. 2), the polar plot begins from point
(−1,0), and after that intersects the real axis at a point denoted by
(R0,0) which places in the right side of the beginning point (−1,0).
According to the Nyquist stability criterion, in such a case system (2)
is stabilized by proportional controller C(s) = kc if 1 < kc < 1/R0. In
the second case (Fig. 3), the polar plot begins from point (−1,0) and
after that intersects the real axis at a point denoted by (R0,0) which
settles in the left side of the beginning point (−1,0). According to
the Nyquist stability criterion, it is resulted that in this case system
(2) cannot be stabilized by a proportional controller. Now, we want
to find the critical time delay by which the polar plot of G(jω) varies
from the first case to the second case. For this critical time delay,
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