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a  b  s  t  r  a  c  t

Based  on  the  recently  proposed  (SISO)  multi-scale  control  scheme,  a new  approach  is introduced  to  design
multi-loop  controllers  for multivariable  processes.  The  basic  feature  of  the  multi-scale  control  scheme  is
to decompose  a  given  plant  into  a sum  of basic  modes.  To  achieve  good  nominal  control  performance  and
performance  robustness,  a set  of sub-controllers  are  designed  based  on the  plant  modes  in such a way  that
they  are  mutually  enhanced  with each  other  so  as to optimize  the  overall  control  objective.  It is  shown
that  the  designed  multi-scale  controller  is equivalent  to a  conventional  PID  controller  augmented  with  a
filter. The  multi-scale  control  scheme  offers  a systematic  approach  to  designing  multi-loop  PID  controllers
augmented  with  filters.  Numerical  studies  show  that  the  proposed  multi-loop  multi-scale  controllers
provide  improved  nominal  performance  and  performance  robustness  over  some  well-established  multi-
loop PID  controller  schemes.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Most industrial processes are multivariable or multi-input and
multi-output (MIMO) in natures where for many decades, the
decentralized control architecture (multi-loop PID control) has
been widely applied to these types of processes. The main reason
that the multi-loop PID control has been preferred to full multi-
variable control is due to the fact that the multi-loop PID control
system is relatively simple to design and implement [1]. However,
the effectiveness of the multi-loop PID control in MIMO  processes
has often been limited by the presence of process interactions or
control-loop interactions. The presence of process interactions in
MIMO processes has been recognized as one of the main culprits
responsible for poor multi-loop control performance. Besides the
process interactions, the presences of deadtime (time delay) and
inverse-response behaviors have also been recognized as impor-
tant factors imposing limitation on control performance in process
plants. For MIMO  processes, a number of multi-loop PID control
designs have been proposed over the last decades with the aim to
achieve good control performance despite the limitation imposed
by process interactions. One example is the independent design
method proposed in [2]. This method is quite simple to apply but it
has a disadvantage resulting from the negligence of how the other
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control-loops are designed. This negligence leads to poor control
performance. Another example is the sequential design method
proposed in [3]. Unlike the independent method, the sequential
design method attempts to include the effect of closing subsequent
loops into the design problem. Nevertheless, as the control per-
formance can be highly dependent on how the design sequence
is chosen, the sequential design method could also result in poor
overall control performance [4].

Besides the independent and sequential design methods,
another well-known multi-loop control design is based on the
detuning approach. In the detuning approach, the performance
of individual controllers is first tuned based on a single-loop
controller design approach (e.g., Ziegler–Nichols tuning). The indi-
vidual controllers are then detuned (reduced performance) once
all the control loops are closed. A well-known detuning method
is the biggest log-modulus (BLT) tuning proposed in [5]. The BLT
method is based on the Ziegler–Nichols tuning for each single-
loop controller where a single detuning parameter is introduced
to meet the stability criterion of the biggest log-modulus. The BLT
method is simple to use but it can lead to sluggish or oscillatory
responses. In addition to the BLT method, Lee and Edgar [4] pro-
posed another method via which the dominant poles can be shifted
to some favorable locations. By shifting the poles to desirable loca-
tions, the multi-loop control performance can be improved and
sluggish or responses can also be avoided. Another pole placement
approach is the root trajectory method proposed by Zhang et al.
[6].
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It is interesting to note that some researchers have also proposed
the application of Internal Model Control (IMC) to the multi-
loop PID control design, i.e., IMC-PID design [7–9]. In the IMC-PID
design of Vu et al. [9], the individual PID controller parameters are
expressed in term of a single tuning parameter, i.e., based on the
closed-loop time constant of each loop. Note that, the controllers
designed based on the IMC  approach may  not be in the first place
the same as PID controllers. Hence, in order to obtain the standard
PID controllers via the IMC  design, a controller reduction process is
often required, e.g., in [9] the IMC-based controllers are reduced to
PID controllers using Maclaurin series.

Chen and Seborg [10] proposed a method combining the idea
of independent design and Nyquist stability analysis. This method
consists of two steps: (1) identifying the stability region for PI con-
trollers, and (2) selecting appropriate PI controller settings within
this stability region. Advantageously, this method can guarantee
the closed-loop stability. Lee et al. [11] proposed a method that
combined the Nyquist array analysis with an iterative continu-
ous cycling approach in order to design multi-loop PI controllers.
Kaspar and Ray [27] proposed the application of chemometric
approach, i.e., principal component analysis (PCA) and partial least
squares (PLS) to the design of multi-loop PI control. The advantages
of the approach as part of the overall control system design include
automatic decoupling and efficient loop paring, as well as the nat-
ural ability to handle non-square system. Lakshminarayanan et al.
[28] further extended the chemometric approach to the dynamic
PLS case, where the reduced process model can be used to design
multi-loop control system including feedforward controller. There
are many other methods for multi-loop control designs; e.g., see
[12–18].

In this paper, we introduce a new multi-loop controller design
based on the recently proposed multi-scale control (MSC) scheme
for SISO processes proposed by Nandong and Zang [19,20]. The basic
principle of the MSC  scheme is to decompose a given plant into
a sum of few basic modes or factors each with distinct speed of
responses – different time-scales. To achieve good nominal con-
trol performance and performance robustness it is vital that the
required controller is designed in such a way that it can promote
good cooperation among these different plant modes. It is inter-
esting to point out that, the designed MSC  controller is actually
equivalent to a conventional PID controller augmented with a sim-
ple (often a first or second order) filter. In this respect, the MSC
scheme provides a competitive alternative to PID controller design.
We shall demonstrate the applicability and effectiveness of the
MSC  scheme to designing multi-loop PID control for multivariable
processes.

The rest of this paper is organized as follows. In Section 2, a brief
overview of the multi-scale control (MSC) scheme and the deriva-
tion of two PID controller tuning formulas are presented. In Section
3, a general procedure for the multi-loop MSC  controller design and
a simple algorithm based on the MSC-PID tuning formulas are pro-
vided. Section 4 presents some illustrative examples to compare the
performances of the proposed multi-loop MSC  controllers (equiv-
alent PID controllers) with some of the existing multi-loop PID
controller designs including the centralized model predictive con-
trol (MPC) strategy. Finally, some concluding remarks and future
work are highlighted in Section 5.

2. Fundamental of multi-scale control scheme

2.1. Preliminary

In the multi-scale control (MSC) scheme proposed by Nandong
and Zang [19,20], it is assumed that a given plant of interest can
be decomposed (via partial fraction expansion) into a sum of basic

modes or factors. These basic modes should be different in their
speed of responses to a given input (manipulated variable)–the
modes with multi-scale dynamics.

In general, for a single-input single-output (SISO) process the
decomposition in the MSC  scheme can be represented as

P(s) = M0(s) + M1(s) + M2(s) + · · · + Mn(s) (1)

where P(s) denotes the plant and Mi(s), ∀ i ∈ {0, 1, 2, . . .,  n} repre-
sent the plant modes, which could be either a first or second order
transfer function with real coefficients. It is also assumed that Mj(s)
has a slower speed of response than Mj+1(s), ∀ j  ∈ {0, 1, . . .,  n − 1}.
Note that, Eq. (1) implies that the plant P can be decomposed into
a sum of n + 1 basic modes.

The principle of the MSC  scheme is to synthesize a controller that
can enhance cooperation among the different plant modes, which
is crucial to improve both nominal performance and performance
robustness. To achieve this enhanced cooperation, the MSC scheme
advocates the idea of using several individual sub-controllers
where each sub-controller is tailored to control a specific plant
mode. In theory, for a given plant that can be decomposed into a
sum of n + 1 basic modes, there will be n + 1 number of separate sub-
controllers required. In a practical application, however, a fewer
number of sub-controllers might in fact be required than in the
ideal case where this can be done by applying a model reduction
process to a given high-order process based on which the controller
is designed. For example, a fourth-order process model will ide-
ally require four sub-controllers. If the fourth-order model could
be reduced to a second-order model, then the MSC  scheme based
on this reduced model will only require two  sub-controllers.

2.2. Realization of the multi-scale control scheme

The details about the MSC  scheme can be found in the recent
papers by Nandong and Zang [19,20]. Here, we only present a brief
overview of the scheme based on the 3-layer MSC structure. Fig. 1
shows the realization block diagram of the 3-layer MSC  structure.
It is assumed that a given plant P(s) can be decomposed into a sum
of three basic modes. Referring to Fig. 1, Ki is the sub-controller to
control the mode Mi(s), ∀ i ∈ {0, 1, 2}; Wj(s), j = 1, 2 the multi-scale
predictor for the jth-inner-loop; E, D, R, Y and Ui denote the signals
for error, disturbance, setpoint, controlled variable and ith-sub-
controller output, respectively. Notice that, the 3-layer MSC  scheme
shown in Fig. 1 can be reduced to a single-loop block diagram as
shown in Fig. 2.

The multi-scale predictor Wj(s), j = 1, 2 is often chosen to be the
inner mode

W(s) =
[

W1(s)

W2(s)

]
=

[
M̄1(s)

M̄2(s)

]
(2)

where M̄i(s) denotes the nominal model for the mode Mi(s).
Referring to Fig. 2, the innermost layer (n = 2) transfer function

is written as follows

G2(s) = U2(s)
U1(s)

= K2(s)
1 + K2(s)W2(s)

(3)

where the next inner-layer (n = 1) transfer function can be
expressed as

G1(s) = K1(s)
1 + K1(s)W1(s)G2(s)

(4)

The overall multi-scale controller Kmsc can be obtained as fol-
lows

Kmsc(s) = K0(s)G1(s)G2(s) (5)
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