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a  b  s  t  r  a  c  t

In this  work,  we  focus  on  distributed  moving  horizon  estimation  (DMHE)  of  nonlinear  systems  subject  to
time-varying  communication  delays.  In  particular,  a class  of  nonlinear  systems  composed  of subsystems
interacting  with each  other  via  their  states  is considered.  In the  proposed  design,  an  observer-enhanced
moving horizon  state  estimator  (MHE)  is designed  for each  subsystem.  The  distributed  MHEs  exchange
information  via  a shared  communication  network.  To handle  communication  delays,  an  open-loop  state
predictor  is designed  for each  subsystem  to provide  predictions  of  unavailable  subsystem  states  (due
to delays).  Based  on  the  predictions,  an  auxiliary  nonlinear  observer  is used  to  generate  a  reference
subsystem  state  estimate  for  each  subsystem.  The  reference  subsystem  state  estimate  is used to  formulate
a  confidence  region  for the actual  subsystem  state.  The  MHE  of a  subsystem  is only  allowed  to  optimize
its  subsystem  state  estimate  within  the  corresponding  confidence  region.  Under  the  assumption  that
there is  an  upper  bound  on  the time-varying  delays,  the  proposed  DMHE  is  proved  to give decreasing
and  ultimately  bounded  estimation  error.  The  theoretical  results  are  illustrated  via the  application  to a
reactor–separator  chemical  process.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The operation of large-scale complex processes for increased efficiency and profits is a challenging task which has attracted significant
attention. In recent years, different types of networked control architectures have been developed for the control of large-scale processes.
Among these control architectures, one promising approach is distributed model predictive control (DMPC) which becomes very popular
due to its ability to deal with scale and interaction issues in large-scale complex processes [1–3]. The existing DMPC algorithms can be
broadly classified into non-cooperative and cooperative DMPC algorithms based on the cost function used in the local controller opti-
mization problem [1]. In a non-cooperative DMPC algorithm, each local controller optimizes a local cost function while in a cooperative
DMPC algorithm, a local controller optimizes a global cost function. Non-cooperative DMPC algorithms include [4–9]. Cooperative DMPC
was first proposed in [10] and was developed in [1,11,12]. Lyapunov-based cooperative DMPC algorithms for nonlinear systems were also
developed in [13,14] in recent years. It has been demonstrated that DMPC has the potential to achieve the performance of the centralized
control while preserving the flexibility of decentralized frameworks [11,15]. In addition to DMPC, other important work within process
control includes the development of a quasi-decentralized control framework for multi-unit plants that achieves the desired closed-loop
objectives with minimal cross communication between the plant units under state feedback control [16]. However, almost all of the above
results are derived under the assumptions that the system states are available all the times or that a centralized state observer is available.
These assumptions, however, either fail in many applications or are inconsistent with the distributed framework which is not favorable
from a fault tolerance point of view. Therefore, it is desirable to develop state estimation schemes in the distributed framework.

In the literature, a majority of the existing results on state observer designs are derived in the centralized framework. For linear systems,
Kalman filters and Luenberger observers are standard solutions. In the context of nonlinear systems, observer designs including high-gain
observers for different specific classes of nonlinear systems are available (e.g., [17–26]). In a recent work [27], observers for systems with
delayed measurements were also developed. It is worth noting that the capability of high-gain observers to be used in output feedback
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control designs has made high-gain observers very popular in output feedback control of nonlinear systems (e.g., [28–33]). In another line
of work, moving horizon estimation (MHE) has become popular because of its ability to handle explicitly nonlinear systems and constraints
on decision variables (e.g., [34–37]). In MHE, the state estimate is determined by solving online an optimization problem that minimizes
the sum of squared errors. In order to have a finite dimensional optimization problem, the horizon (estimation window size into the past) of
MHE is in general chosen to be finite. At a sampling time, when a new measurement is available, the oldest measurement in the estimation
window is discarded, and the finite horizon optimization problem is solved again to get the new estimate of the state [38,34]. In a recent
work [39], a robust MHE  scheme was developed which effectively integrates deterministic (high-gain) observers into the MHE  framework.
The resulting robust MHE  scheme gives bounded estimation error and has a tunable convergence rate. This makes the robust MHE  suitable
for output feedback control system design and has been applied in the design of an output feedback Lyapunov-based MPC  [40] and an
output feedback economic MPC  [41].

Within the decentralized/distributed frameworks, there are some results developed in the context of linear systems and a few results for
nonlinear systems in the framework of MHE. For linear systems, the results focus on decentralized deterministic observers (e.g., [42–45])
and distributed Kalman filtering methods for sensor networks (e.g, [46–49]). Recently, in the framework of moving horizon estimation,
distributed MHE  (DMHE) schemes were also developed for constrained linear systems [50,51]. For nonlinear systems, distributed moving
horizon estimation schemes (DMHE) were developed with the local MHE  designed based on a centralized model [52] or the subsystem
model [53]. The above DMHE schemes are based on the classical centralized MHE  as in [34] and they inherit the advantages of classical
MHE including the capability to handle nonlinearities, constraints and optimality. However, it is not easy to characterize the effects of
bounded uncertainties.

In a recent work [54], an observer-enhanced DMHE design was  developed for a class of nonlinear systems with bounded process
uncertainties. In this DMHE, each subsystem MHE communicates with subsystems that it interacts with every sampling time. In the design
of each subsystem MHE, an auxiliary deterministic nonlinear observer is taken advantage of to calculate a confidence region that contains
the actual system state every sampling time. The subsystem MHE  is only allowed to optimize its state estimate within the confidence region.
This strategy was demonstrated to guarantee the convergence and ultimate boundedness properties of the estimation error. However, the
above results were derived under the assumption that the communication between subsystems is flawless and there is no delay in the
information transmission. In practice, this assumption may  not hold especially when shared wireless communication network is used.
Issues brought into the design by communication need to be carefully addressed [55].

Motivated by the above considerations, in this work we proposed a DMHE scheme that is able to handle time-varying communication
delays. In the proposed design, a nonlinear observer-enhanced MHE  is designed for each subsystem and the distributed MHEs are assumed
to be able to communicate and exchange information with each other via a shared communication network which may introduce com-
munication delays. To handle time-varying delays in the communication, an open-loop state predictor is designed for each subsystem to
provide predictions of unavailable subsystem states. In the design of each predictor, the centralized system model is used. Based on the state
predictions, an auxiliary nonlinear observer is used to generate a reference subsystem state estimate for each subsystem every sampling
time. Based on the reference subsystem state estimate as well as the local output measurement, a confidence region is constructed for the
actual state of a subsystem. A subsystem MHE  is only allowed to optimize its state estimate within the corresponding confidence region
at a sampling time. The proposed DMHE is proved to give decreasing and ultimately bounded estimation errors under the assumption
that there is an upper bound on the time-varying delay. The theoretical results are illustrated via the application to a reactor–separator
chemical process, and the proposed approach is shown to be superior to a DMHE approach without considering communication delays
explicitly.

Notation. The operator | · | denotes Euclidean norm of a scalar or a vector while | · |Q indicates the weighted Euclidean norm of a vector,

defined as |x|Q =
√

xT Qx where Q is a positive definite square matrix. A function f(x) is said to be locally Lipschitz with respect to its
argument x if there exists a positive constant Lx

f
such that |f (x′) − f (x′′)| ≤ Lx

f
|x′ − x′′| for all x′ and x′′ in a given region of x and Lx

f
is the

associated Lipschitz constant. A continuous function  ̨ : [0, a) → [0, ∞)  is said to belong to class K if it is strictly increasing and satisfies
˛(0) = 0. A function ˇ(r, s) is said to be a class KL function if for each fixed s, ˇ(r, s) belongs to class K with respect to r, and for each fixed
r, it is deceasing with respect to s, and ˇ(r, s) → 0 as s→ ∞.  The symbol diag(v) denotes a diagonal matrix whose diagonal elements are the
elements of vector v. A matrix (or vector) A+ denotes the pseudoinverse of a matrix (or vector) A. The symbol ‘\’ denotes the set subsection
such that A\B := {x ∈ R

nx |x ∈ A, x /∈ B}. The set I = {1, . . .,  m}.

2. Preliminaries

2.1. Problem formulation

In this work, we consider a class of nonlinear systems composed of m interconnected subsystems, which are described by the following
state-space model:

ẋi(t) = fi(xi(t), wi(t)) + f̃i(Xi(t))

yi(t) = hi(xi(t)) + vi(t)
(1)

where xi(t) ∈ R
nxi , i ∈ I, is the state vectors of subsystem i, wi(t) ∈ R

nwi characterizes disturbances associated with subsystem i, and the
vector function fi denotes the dependence of the dynamics of xi on itself and the associated disturbances. The vector function f̃i denotes
the interactions between subsystem i and other subsystems. The vector yi ∈ R

nyi is the measured output of subsystem i and vi ∈ R
nvi is

a measurement noise vector. We  assume that the system disturbances and measurement noise are bounded: wi ∈ Wi and vi ∈ Vi where
Wi := {wi ∈ R

nwi : |wi| ≤ �wi
}, Vi := {vi ∈ R

nvi : |vi| ≤ �vi
}, with �wi

and �vi
, i ∈ I, known positive real numbers. We further assume that fi, f̃i,

and hi for all i ∈ I are locally Lipschitz.
The state vector Xi(t) contains subsystem states involved in the interaction term of subsystem i with other subsystems. In this work,

Ii ⊂ I (i ∈ I) will be used to denote the set of subsystem indices whose corresponding subsystem states are involved in Xi. It should be noted
that xi may  be involved in Xi. In this work the sets Ii (i ∈ I), are assumed to be known and will be used in the description of the proposed
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