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The Survival Kit is a Fortran 90 Software intended for survival analysis using proportional

hazards models and their extension to frailty models with a single response time. The hazard

function is described as the product of a baseline hazard function and a positive (expo-

nential) function of possibly time-dependent fixed and random covariates. Stratified Cox,

grouped data and Weibull models can be used. Random effects can be either log-gamma

or  normally distributed and can account for a pedigree structure. Variance parameters are

estimated in a Bayesian context. It is possible to account for the correlated nature of two

random effects either by specifying a known correlation coefficient or estimating it from the

data. An R interface of the Survival Kit provides a user friendly way to run the software.

©  2013 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

The most popular class of survival models is the class of
proportional hazard models [1,2], where the hazard of an
individual at time t is described as the product of the base-
line function and of a positive term which is an exponential
function of a vector of covariates w′ multiplied by vector of
regression parameters �. Frailty models are an extension of
standard survival analysis models which allows to account
for unobserved random heterogeneity [3] or equivalently, to
include random effects. These account for an unobserved
environmental or genetic effect affecting the hazard of the
individual. When two random effects are included (e.g., [4]),
these can be independent from each other or related to some
degree, leading to the need to estimate correlated random
effects. Analyses failing to account for this underlying correla-
tion in survival times are likely to underestimate the variances
of parameters [5].
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The aim of this paper is to introduce “the Survival Kit”,
software for survival analysis capable to handle very large
amounts of data, with the possibility to account for their right
censored or left truncated status in proportional hazards mod-
els. The fixed, random and stratification variables can be time
dependent. The estimation of variance components is done
in a Bayesian framework and is based on a Laplace approxi-
mation of the marginal posterior density of these parameters,
from which a modal point estimate can be obtained. Various
modeling possibilities are shown in [4], including stratified
and frailty survival models with simultaneous estimation of
variances for two random effects, center and interaction of
treatment by center. The first random effect corrected for
deviation centers from the overall baseline hazard, while the
second was to deal with deviation of each center from the over-
all treatment effect. When required, the first three moments of
this posterior density can be estimated and the full posterior
density can be approximately constructed and visualized. The
program was originally written in Fortran 90 for computational

0169-2607/$ – see front matter © 2013 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cmpb.2013.01.010

dx.doi.org/10.1016/j.cmpb.2013.01.010
www.intl.elsevierhealth.com/journals/cmpb
mailto:gabor.meszaros@boku.ac.at
dx.doi.org/10.1016/j.cmpb.2013.01.010


504  c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 1 0 ( 2 0 1 3 ) 503–510

efficiency on very large datasets. An R interface was added to
provide easier usage and graphical capabilities.

In Section 2 we  present the statistical model. In Section
3, the Survival Kit is described and in Section 4 two illustra-
tive applications are presented, one using real infant mortality
data, the other using simulated data, and computing variances
and covariance of correlated random effects.

2.  Theoretical  background  and
computational  methods

This section presents a brief overview of the methods used in
the Survival Kit. More  detailed information can be found in
[4,6].

Proportional hazard models and their extension to include
random effects describe the hazard function of each individual
�(t) (i.e., its limiting probability of dying at time t, given it is
still alive just prior to t) as the product of a baseline hazard
function and a positive (exponential) function of explanatory
covariates.

The model is specified as:

�(t; x(t), z(t)) = �0(t) exp{x(t)′� + z(t)′s} (1)

where � and s are vectors of fixed regression coefficients and
random effects. The second part, exp{x(t)′� + z(t)′s}, repre-
sents a stress-dependent term specific to the animals with
fixed covariates x and random covariates z. Both the fixed
and random covariates can be time dependent. Only stepwise
functions of time are considered for x(t) or z(t), i.e., x(t) and z(t)
are supposed to remain constant over intervals [ti, ti + 1[. The
first part �0(t) is the baseline hazard function. It is left unspec-
ified in the Cox model [1] or it can take a parametric form as
in Weibull model shown in (2).

�0(t) = ��(�t)�−1 (2)

where � and � are the shape and scale parameters of the
Weibull distribution [2].

The baseline hazard function can be unique or can differ
between groups of individuals. The time scale can be divided
into several intervals using stratified models, with specific
baseline hazards with a separate origin for each, defining a
piecewise (e.g., piecewise Weibull) model. This is useful to
evaluate hazards with a repetitive pattern. One example is
the modeling of culling in dairy cows which clearly follows
a particular within lactation pattern [7].

In case of discrete time scale (i.e. with very few distinct time
values), there are often many  failures occurring at the same
time, leading to “ties” between failure times. In such case, the
Cox model is no longer valid: if m failure times are tied at time
l and n individuals are at risk just prior to l, the partial like-
lihood contribution involves a summation over all possible
subsets of size m from the n at risk, which makes the choice of
a Cox model for the discrete time measures inadequate and
computationally demanding. Prentice and Gloeckler [8] pro-
posed another approach, the “grouped data model” based on
[9]. They assumed that the actual failure times occur in a num-
ber of intervals (e.g., years) [0 = �0, �1), [�1, �2), . . . [�k−1, �k), . . .

and that the risk of failure is constant within each interval. All
failures occurring in the same interval [�k−1, �k) are “grouped”,
and the attached failure time is k. They also assumed that
censoring occurs at the end of each interval. The estimation
procedure they proposed was included in the Survival Kit,
using a reparameterization described in [10]. Indeed, it is pos-
sible to rewrite the model as an exponential regression model
including an additional time-dependent effect changing at the
beginning of each new interval (see [10] for details).

Technically, the hyperparameters of the prior distribution
of random effects (e.g., genetic variance) are estimated from
their marginal posterior density [6]. The latter can be obtained
through the exact algebraic integration of the random effect
out of the joint posterior density when the random effect is
assumed to follow a log-gamma distribution. However this is
not possible when a normal (or multivariate normal) distri-
bution is used for random effects, for example genetic effects
of related animals. Instead, an approximate integration can be
implemented using a Laplace approximation. Then, assuming
the hyperparameters known, the estimates of all other param-
eters are obtained as the mode of their joint posterior density.
This maximization is done using a limited memory  quasi-
Newton approach [11] which only requires the computation
of the vector of first derivatives of the function to maximize.

For very large applications and models involving correlated
random effects, the quasi-Newton approach may converge
very slowly. In this case, a full Newton–Raphson algorithm
(using both the first and the second derivatives of the func-
tion to maximize) can be used to guarantee convergence in
a much smaller number of (computationally more  expensive)
iterations. Also a combination of both quasi-Newton and full
Newton–Raphson algorithms is possible and even advisable
when good starting values are not available.

Finally, it is also possible to jointly estimate the variance
of two  random effects using a derivative free algorithm. A
normal distribution can be assumed for each level of both
random effects. When individuals are (genetically) related, all
relationships can be accounted for, assuming a multivariate
normal distribution with a (co)variance matrix proportional
to A, their relationship matrix [12]. These random effects can
be independent from each other [4], but it is also possible to
account for their correlated nature as in [5], for example when
they correspond to time-dependent effects, for example two
genetic effects influencing differently the trait of interest in
early and late life. In this case, the two random effects should
have the same number of levels. The variances of the ran-
dom effects and their correlation coefficient could be specified
(in case of availability of good prior estimates) or estimated
simultaneously with the program.

3.  Computer  program

3.1.  General  description

The Survival Kit has been developed since its first release in
1994, gradually adding possibilities of stratification and differ-
ent model types, notably the possibility to model correlated
random effects as its latest feature. It is heavily used mostly
in the animal breeding community, demonstrated by over
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