
Computer Science Review 28 (2018) 178–203

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Survey

Graph grammars according to the type of input and manipulated
data: A survey
Saadia Albane a, Hachem Slimani a,*, Hamamache Kheddouci b
a LIMED Laboratory, Computer Science Department, University of Bejaia, 06000 Bejaia, Algeria
b Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205 F-69622, France

a r t i c l e i n f o

Article history:
Received 20 June 2016
Received in revised form 21 March 2018
Accepted 3 April 2018

Keywords:
Graph grammar
Type of input and manipulated data
Type of generated graph
Big Data
Cloud computing
Application

a b s t r a c t

Graph grammars which generate graphs are a generalization of Chomsky grammars that generate
strings. During the last decades there has been a remarkable development of graph grammars. Due to
their wide diversity of applications, graph grammars have received a particular attention from many
scientists and researchers. There has been applications of graph grammars in several areas such as
pattern recognition, data base systems, biological developments in organisms, semantics of programming
languages, compiler construction, software development environments, etc. In the literature, in some
surveys, graph grammars have been studied and classified according to some criteria such as: parallel
or sequential applicability of rules, embedding mechanism, type of generated graphs, etc. In addition to
this, as data play an important role more and more in different domains, we survey in this paper the vast
field of graph grammars by classifying them according to three criteria: the number of manipulated data
(single or multiple types), the nature of data (structured or unstructured), and finally the kind of data
(images, graphs, patterns, etc.). In particular, we consider that a graph grammar is well defined by five
components instead of four, namely: type of generated graphs (TG), a start graph (Z), a set of production
rules (P), a set of additional specifications of the rules (A), and the criterion that we additionally consider
which is the type of input andmanipulated data (TD). This proposed formalism, especially with the added
fifth component, may serve to overcome some issues related to Big Data and Cloud Computing domains.

© 2018 Elsevier Inc. All rights reserved.

Contents

1. Introduction and motivation.. 179
2. Preliminaries and definitions ... 180
3. Graph grammars which manipulate a single data type ... 183

3.1. Structured data ... 183
3.1.1. Graph grammars which manipulate data in the form of images .. 183
3.1.2. Graph grammars which manipulate data in the form of graphs... 185
3.1.3. Graph grammars which manipulate data in the form of patterns .. 188

3.2. Unstructured data .. 189
3.2.1. Graph grammars which manipulate data in the form of alphabets .. 189

4. Graph grammars which manipulate multiple data types .. 193
4.1. Hybrid data (structured and/or unstructured data)... 193

4.1.1. Graph grammars which manipulate 2 types of data.. 193
4.1.2. Graph grammars which manipulate at least 3 types of data... 196

5. Recapitulative of the studied graph grammars... 200
6. Conclusion and discussion ... 200

Acknowledgments .. 202
References ... 202

* Corresponding author.
E-mail addresses: saadialbane@gmail.com (S. Albane), haslimani@gmail.com

(H. Slimani), hamamache.kheddouci@univ-lyon1.fr (H. Kheddouci).

https://doi.org/10.1016/j.cosrev.2018.04.001
1574-0137/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2018.04.001
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2018.04.001&domain=pdf
mailto:saadialbane@gmail.com
mailto:haslimani@gmail.com
mailto:hamamache.kheddouci@univ-lyon1.fr
https://doi.org/10.1016/j.cosrev.2018.04.001

S. Albane et al. / Computer Science Review 28 (2018) 178–203 179

Table of symbols

Symbol Meaning
GG Graph Grammar.
V Set of vertices.
E Set of edges.
sV Assigns an edges source vertex,
tV Assigns an edges target vertex,
lV Assigns vertex labels.
lE Assigns edge labels.
ED Set of directed edges.
END Set of undirected edges.
TD Type of input and manipulated data.
TG Type of generated graph.
A Set of additional specifications of the productions.
Σ Set of vertex labels.
ΣN Set of nonterminal vertex labels.
ΣT Set of terminal vertex labels.
Γ Set of edge labels.
ΓN Set of nonterminal edge labels.
ΓT Set of terminal edge labels.
P Set of production rules.
Z Initial graph or axiom.
I Input vertices.
O Output vertices.
E Embedding of the production rule.
WG Web Grammar.
APGG Attributed Programmed Graph Grammar.
GGA Graph Grammar with Application conditions.
nPCEGG node-replacement Graph Grammar with Path-

Controlled Embedding.
CFGG Context Free Graph Grammar.
DNLCGG Directed Node Label Controlled Graph Grammar.
NLCGG Node Label Controlled Graph Grammar.
1DNCEGG Directed Graph Grammar with Neighborhood-

Controlled Embedding and singleton left-hand
sides.

NCEGG Neighborhood Controlled Embedding Graph
Grammar.

eNCEGG Graph Grammar with Neighborhood Controlled
Embedding and dynamic edge relabeling.

neNCEGG Node replacement Graph Grammars with dy-
namic node relabeling.

NRGG or C-edNCGG Node Replacement Graph Grammar.
R(A-DNLCGG) Relabeling of an Apex DNLC Graph Grammar.
ADGG Attribute Dependency Graph Grammar.
TAGG Tree Adjoining Graph Grammar.
ASGG Adaptive Star Graph Grammar.
edNCEGG Neighborhood Controlled Embedding with edge-

labeled and directed Graph Grammar.
HRGG Hyperedge Replacement Graph Grammar.
ERGG Edge Replacement Graph Grammar.
GGPD Graph Grammar for Package Diagrams.
ACSGG Attributed Context-Sensitive Graph Grammar.
TGG Triple Graph Grammar.
PrGG Pair Graph Grammar.
PGG Parsing Graph Grammar.
cNRGG conditional Node Replacement Graph Grammar.
POcNRGG Partially Ordered conditional Graph Grammar.

1. Introduction and motivation

As a generalization of Chomsky grammars which generate stri
ngs, graph grammars that generate graphs were first introduced,

under the name ofWeb Grammars [1], to deal with picture process-
ing problems. During the last decades, graph grammars, that are
graph rewriting systems, have received a particular attention from
many scientists and researchers because of their wide diversity
of applications in several areas such as pattern recognition, data
base systems, modeling objects and structure dynamics, biological
developments in organisms, extraction of graph queries, semantics
of programming languages, compiler construction, software de-
velopment environments, bidirectional transformations, etc. Some
of such applications can be found in [2–14]. In contrast to string
grammars, and due to the properties of graphs, graph grammars
represent a suitable formalism for describing structural manipu-
lations of multidimensional data. The main principle of derivation
in a graph grammar consists of recursively replacing from a given
data graph a subgraph by another one, to generate terminal graphs
representing the corresponding language.

The development process of the components that constitute
basic elements of graph grammars has evolved over time. Initially,
Pfaltz and Rosenfeld [1] used three components to represent web
grammars, that are ‘‘phrase-structure’’ grammars which define
languages whose sentences are directed graphs with symbols at
their vertices, namely WG = (Σ, Z, P) such that: Σ is a set of
terminal and nonterminal symbols corresponding to the vertex
labels; Z is a set of initial subgraphs; and P is a set of rewriting
rules where each rule is mainly composed of a left hand side
representing the subgraph to be substituted, and a right hand
side corresponding to the subgraph to be inserted. Since then, for
considerations of graph grammar applications in different fields,
other components are introduced and involved in the definition of
graph grammars, such as: Γ which is a set of edge labels; A′, B′

which are finite sets of vertex and edge attributes; C which is a
control diagram over a set of productions P; A(p) = (AP(p), AN(p))
which is an application condition constituted of a positive (resp.
negative) one AP(p) (resp. AN(p)), etc. In this setting, for instance,
by involving Γ , A′, B′ and C , Bunke [15] introduced Attributed
Programmed Graph Grammar which generates undirected graphs
with labeled vertices and edges over (Σ, Γ) for the interpretation
of schematic diagrams. Furthermore, Fotso et al. [4] (resp. Bau-
mann [16]) used this graph grammar for generating the diversity in
a products family (for representing a-priori knowledge about com-
monmusic notation). On the other hand, by involving AN(p), Habel
et al. [7] defined Graph Grammar with Application Conditions for the
specification of a lift control system. Moreover, Machado et al. [9]
investigated themodeling of dynamic systemsbymeans of second-
order graph grammars. In particular, they proposed a notion of
rule-based modification of graph rules based on two concepts that
are double-pushout rewriting and negative application conditions.
Recently, De la para and Dean [17] proposed a formalism of four
main elements which gathers all the above components to repre-
sent graph grammars, that is GG = (TG, Z, P, A) such that: TG is a
type of generated/recognized graphs over Σ and/or Γ , which can
be directed or undirected, with labeled vertices and/or edges; Z is a
start graph; P is a set of production rules; and A is a set of additional
specifications of the rules which extends the manner of applying
the production rules, such as: the applied embedding mechanism
E , the associated application conditions A(p), the corresponding
vertex and edge attributes A′, B′, the priority of application rules
if any where the order can either be specified explicitly by using
a control flow mechanism, or it can be given implicitly by causal
dependencies of rule applications [18], etc.

As data volumes grow exponentially, one of the questions that
might arise is: ‘‘Is the formalism of graph grammars proposed
by De la para and Dean [17] sufficiently adequate to take into
consideration of Big Data characteristics and requirements?’’. Big
Data represent a huge volume of both structured and unstruc-
tured data which is so vast that it is hard to process them us-
ing the conventional methods. Specifically, these large amounts

Download English Version:

https://daneshyari.com/en/article/6891648

Download Persian Version:

https://daneshyari.com/article/6891648

Daneshyari.com

https://daneshyari.com/en/article/6891648
https://daneshyari.com/article/6891648
https://daneshyari.com

